Information on Result #606437
Linear OA(3214, 32, F32, 14) (dual of [32, 18, 15]-code or 32-arc in PG(13,32)), using Reed–Solomon code RS(18,32)
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(2102, 192, F2, 29) (dual of [192, 90, 30]-code) | [i] | Concatenation of Two Codes | |
2 | Linear OA(2101, 186, F2, 29) (dual of [186, 85, 30]-code) | [i] | ||
3 | Linear OA(2100, 180, F2, 29) (dual of [180, 80, 30]-code) | [i] | ||
4 | Linear OA(299, 174, F2, 29) (dual of [174, 75, 30]-code) | [i] | ||
5 | Linear OA(298, 168, F2, 29) (dual of [168, 70, 30]-code) | [i] | ||
6 | Linear OOA(2195, 125, F2, 2, 74) (dual of [(125, 2), 55, 75]-NRT-code) | [i] | Concatenation of Two NRT-Codes | |
7 | Linear OOA(2190, 120, F2, 2, 74) (dual of [(120, 2), 50, 75]-NRT-code) | [i] | ||
8 | Linear OOA(2185, 115, F2, 2, 74) (dual of [(115, 2), 45, 75]-NRT-code) | [i] | ||
9 | Linear OOA(2180, 110, F2, 2, 74) (dual of [(110, 2), 40, 75]-NRT-code) | [i] | ||
10 | Linear OOA(2175, 105, F2, 2, 74) (dual of [(105, 2), 35, 75]-NRT-code) | [i] | ||
11 | Linear OOA(2170, 100, F2, 2, 74) (dual of [(100, 2), 30, 75]-NRT-code) | [i] | ||
12 | Linear OOA(2165, 95, F2, 2, 74) (dual of [(95, 2), 25, 75]-NRT-code) | [i] | ||
13 | Linear OOA(2198, 96, F2, 3, 74) (dual of [(96, 3), 90, 75]-NRT-code) | [i] | ||
14 | Linear OOA(2194, 93, F2, 3, 74) (dual of [(93, 3), 85, 75]-NRT-code) | [i] | ||
15 | Linear OOA(2190, 90, F2, 3, 74) (dual of [(90, 3), 80, 75]-NRT-code) | [i] | ||
16 | Linear OOA(2186, 87, F2, 3, 74) (dual of [(87, 3), 75, 75]-NRT-code) | [i] | ||
17 | Linear OOA(2182, 84, F2, 3, 74) (dual of [(84, 3), 70, 75]-NRT-code) | [i] | ||
18 | Linear OOA(2178, 81, F2, 3, 74) (dual of [(81, 3), 65, 75]-NRT-code) | [i] | ||
19 | Linear OOA(2174, 78, F2, 3, 74) (dual of [(78, 3), 60, 75]-NRT-code) | [i] | ||
20 | Linear OOA(2170, 75, F2, 3, 74) (dual of [(75, 3), 55, 75]-NRT-code) | [i] | ||
21 | Linear OOA(2166, 72, F2, 3, 74) (dual of [(72, 3), 50, 75]-NRT-code) | [i] | ||
22 | Linear OOA(2162, 69, F2, 3, 74) (dual of [(69, 3), 45, 75]-NRT-code) | [i] | ||
23 | Linear OOA(2158, 66, F2, 3, 74) (dual of [(66, 3), 40, 75]-NRT-code) | [i] | ||
24 | Linear OOA(2154, 63, F2, 3, 74) (dual of [(63, 3), 35, 75]-NRT-code) | [i] | ||
25 | Linear OOA(2150, 60, F2, 3, 74) (dual of [(60, 3), 30, 75]-NRT-code) | [i] | ||
26 | Linear OOA(2146, 57, F2, 3, 74) (dual of [(57, 3), 25, 75]-NRT-code) | [i] | ||
27 | Linear OOA(2260, 95, F2, 3, 149) (dual of [(95, 3), 25, 150]-NRT-code) | [i] | ||
28 | Linear OOA(2250, 90, F2, 3, 149) (dual of [(90, 3), 20, 150]-NRT-code) | [i] | ||
29 | Linear OOA(2259, 81, F2, 4, 119) (dual of [(81, 4), 65, 120]-NRT-code) | [i] | ||
30 | Linear OOA(2252, 78, F2, 4, 119) (dual of [(78, 4), 60, 120]-NRT-code) | [i] | ||
31 | Linear OOA(2245, 75, F2, 4, 119) (dual of [(75, 4), 55, 120]-NRT-code) | [i] | ||
32 | Linear OOA(2238, 72, F2, 4, 119) (dual of [(72, 4), 50, 120]-NRT-code) | [i] | ||
33 | Linear OOA(2231, 69, F2, 4, 119) (dual of [(69, 4), 45, 120]-NRT-code) | [i] | ||
34 | Linear OOA(2224, 66, F2, 4, 119) (dual of [(66, 4), 40, 120]-NRT-code) | [i] | ||
35 | Linear OOA(2217, 63, F2, 4, 119) (dual of [(63, 4), 35, 120]-NRT-code) | [i] | ||
36 | Linear OOA(2210, 60, F2, 4, 119) (dual of [(60, 4), 30, 120]-NRT-code) | [i] | ||
37 | Linear OOA(2203, 57, F2, 4, 119) (dual of [(57, 4), 25, 120]-NRT-code) | [i] | ||
38 | Linear OOA(2196, 54, F2, 4, 119) (dual of [(54, 4), 20, 120]-NRT-code) | [i] | ||
39 | Linear OOA(2260, 57, F2, 5, 164) (dual of [(57, 5), 25, 165]-NRT-code) | [i] | ||
40 | Linear OA(32110, 148, F32, 85) (dual of [148, 38, 86]-code) | [i] | Construction X with Algebraic-Geometric Codes | |
41 | Linear OA(32109, 148, F32, 84) (dual of [148, 39, 85]-code) | [i] | ||
42 | Linear OA(32108, 148, F32, 83) (dual of [148, 40, 84]-code) | [i] | ||
43 | Linear OA(32107, 148, F32, 82) (dual of [148, 41, 83]-code) | [i] | ||
44 | Linear OA(32106, 148, F32, 81) (dual of [148, 42, 82]-code) | [i] | ||
45 | Linear OA(32105, 148, F32, 80) (dual of [148, 43, 81]-code) | [i] | ||
46 | Linear OA(32104, 148, F32, 79) (dual of [148, 44, 80]-code) | [i] | ||
47 | Linear OA(32103, 148, F32, 78) (dual of [148, 45, 79]-code) | [i] | ||
48 | Linear OA(32102, 148, F32, 77) (dual of [148, 46, 78]-code) | [i] | ||
49 | Linear OA(32101, 148, F32, 76) (dual of [148, 47, 77]-code) | [i] | ||
50 | Linear OA(32100, 148, F32, 75) (dual of [148, 48, 76]-code) | [i] | ||
51 | Linear OA(3299, 148, F32, 74) (dual of [148, 49, 75]-code) | [i] | ||
52 | Linear OA(3298, 148, F32, 73) (dual of [148, 50, 74]-code) | [i] | ||
53 | Linear OA(3297, 148, F32, 72) (dual of [148, 51, 73]-code) | [i] | ||
54 | Linear OA(3296, 148, F32, 71) (dual of [148, 52, 72]-code) | [i] | ||
55 | Linear OA(3295, 148, F32, 70) (dual of [148, 53, 71]-code) | [i] | ||
56 | Linear OA(3294, 148, F32, 69) (dual of [148, 54, 70]-code) | [i] | ||
57 | Linear OA(3293, 148, F32, 68) (dual of [148, 55, 69]-code) | [i] | ||
58 | Linear OA(3292, 148, F32, 67) (dual of [148, 56, 68]-code) | [i] | ||
59 | Linear OA(3291, 148, F32, 66) (dual of [148, 57, 67]-code) | [i] | ||
60 | Linear OA(3290, 148, F32, 65) (dual of [148, 58, 66]-code) | [i] | ||
61 | Linear OA(3289, 148, F32, 64) (dual of [148, 59, 65]-code) | [i] | ||
62 | Linear OA(3288, 148, F32, 63) (dual of [148, 60, 64]-code) | [i] | ||
63 | Linear OA(3287, 148, F32, 62) (dual of [148, 61, 63]-code) | [i] | ||
64 | Linear OA(3286, 148, F32, 61) (dual of [148, 62, 62]-code) | [i] | ||
65 | Linear OA(3285, 148, F32, 60) (dual of [148, 63, 61]-code) | [i] | ||
66 | Linear OA(3284, 148, F32, 59) (dual of [148, 64, 60]-code) | [i] | ||
67 | Linear OA(3283, 148, F32, 58) (dual of [148, 65, 59]-code) | [i] | ||
68 | Linear OA(3282, 148, F32, 57) (dual of [148, 66, 58]-code) | [i] | ||
69 | Linear OA(3281, 148, F32, 56) (dual of [148, 67, 57]-code) | [i] | ||
70 | Linear OA(3280, 148, F32, 55) (dual of [148, 68, 56]-code) | [i] | ||
71 | Linear OA(3279, 148, F32, 54) (dual of [148, 69, 55]-code) | [i] | ||
72 | Linear OA(3278, 148, F32, 53) (dual of [148, 70, 54]-code) | [i] | ||
73 | Linear OA(3277, 148, F32, 52) (dual of [148, 71, 53]-code) | [i] | ||
74 | Linear OA(3276, 148, F32, 51) (dual of [148, 72, 52]-code) | [i] | ||
75 | Linear OA(3275, 148, F32, 50) (dual of [148, 73, 51]-code) | [i] | ||
76 | Linear OA(3274, 148, F32, 49) (dual of [148, 74, 50]-code) | [i] | ||
77 | Linear OA(3273, 148, F32, 48) (dual of [148, 75, 49]-code) | [i] | ||
78 | Linear OA(3272, 148, F32, 47) (dual of [148, 76, 48]-code) | [i] | ||
79 | Linear OA(3271, 148, F32, 46) (dual of [148, 77, 47]-code) | [i] | ||
80 | Linear OA(3270, 148, F32, 45) (dual of [148, 78, 46]-code) | [i] | ||
81 | Linear OA(3269, 148, F32, 44) (dual of [148, 79, 45]-code) | [i] | ||
82 | Linear OA(3268, 148, F32, 43) (dual of [148, 80, 44]-code) | [i] | ||
83 | Linear OA(3267, 148, F32, 42) (dual of [148, 81, 43]-code) | [i] | ||
84 | Linear OA(3266, 148, F32, 41) (dual of [148, 82, 42]-code) | [i] | ||
85 | Linear OA(3265, 148, F32, 40) (dual of [148, 83, 41]-code) | [i] | ||
86 | Linear OA(3264, 148, F32, 39) (dual of [148, 84, 40]-code) | [i] | ||
87 | Linear OA(3263, 148, F32, 38) (dual of [148, 85, 39]-code) | [i] | ||
88 | Linear OA(3262, 148, F32, 37) (dual of [148, 86, 38]-code) | [i] | ||
89 | Linear OA(3261, 148, F32, 36) (dual of [148, 87, 37]-code) | [i] | ||
90 | Linear OA(3260, 148, F32, 35) (dual of [148, 88, 36]-code) | [i] | ||
91 | Linear OA(3259, 148, F32, 34) (dual of [148, 89, 35]-code) | [i] | ||
92 | Linear OA(3258, 148, F32, 33) (dual of [148, 90, 34]-code) | [i] | ||
93 | Linear OA(3257, 148, F32, 32) (dual of [148, 91, 33]-code) | [i] | ||
94 | Linear OA(3256, 148, F32, 31) (dual of [148, 92, 32]-code) | [i] | ||
95 | Linear OA(3255, 148, F32, 30) (dual of [148, 93, 31]-code) | [i] | ||
96 | Linear OA(32110, 1057, F32, 42) (dual of [1057, 947, 43]-code) | [i] | (u, u−v, u+v+w)-Construction |