Information on Result #606744
Linear OA(25621, 256, F256, 21) (dual of [256, 235, 22]-code or 256-arc in PG(20,256)), using Reed–Solomon code RS(235,256)
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(1676, 102, F16, 43) (dual of [102, 26, 44]-code) | [i] | Concatenation of Two Codes | |
2 | Linear OA(1675, 99, F16, 43) (dual of [99, 24, 44]-code) | [i] | ||
3 | Linear OA(25624, 259, F256, 23) (dual of [259, 235, 24]-code) | [i] | ✔ | Construction X with Reed–Solomon Codes |
4 | Linear OA(25622, 259, F256, 21) (dual of [259, 237, 22]-code) | [i] | ✔ | |
5 | Linear OA(25626, 261, F256, 24) (dual of [261, 235, 25]-code) | [i] | ✔ | |
6 | Linear OA(25623, 261, F256, 21) (dual of [261, 238, 22]-code) | [i] | ✔ | |
7 | Linear OA(25628, 263, F256, 25) (dual of [263, 235, 26]-code) | [i] | ✔ | |
8 | Linear OA(25624, 263, F256, 21) (dual of [263, 239, 22]-code) | [i] | ✔ | |
9 | Linear OA(25630, 265, F256, 26) (dual of [265, 235, 27]-code) | [i] | ✔ | |
10 | Linear OA(25625, 265, F256, 21) (dual of [265, 240, 22]-code) | [i] | ✔ | |
11 | Linear OA(25632, 267, F256, 27) (dual of [267, 235, 28]-code) | [i] | ✔ | |
12 | Linear OA(25626, 267, F256, 21) (dual of [267, 241, 22]-code) | [i] | ✔ | |
13 | Linear OA(25634, 269, F256, 28) (dual of [269, 235, 29]-code) | [i] | ✔ | |
14 | Linear OA(25627, 269, F256, 21) (dual of [269, 242, 22]-code) | [i] | ✔ | |
15 | Linear OA(25636, 271, F256, 29) (dual of [271, 235, 30]-code) | [i] | ✔ | |
16 | Linear OA(25628, 271, F256, 21) (dual of [271, 243, 22]-code) | [i] | ✔ | |
17 | Linear OA(25638, 273, F256, 30) (dual of [273, 235, 31]-code) | [i] | ✔ | |
18 | Linear OA(25629, 273, F256, 21) (dual of [273, 244, 22]-code) | [i] | ✔ | |
19 | Linear OA(25640, 275, F256, 31) (dual of [275, 235, 32]-code) | [i] | ✔ | |
20 | Linear OA(25630, 275, F256, 21) (dual of [275, 245, 22]-code) | [i] | ✔ | |
21 | Linear OA(25642, 277, F256, 32) (dual of [277, 235, 33]-code) | [i] | ✔ | |
22 | Linear OA(25631, 277, F256, 21) (dual of [277, 246, 22]-code) | [i] | ✔ | |
23 | Linear OA(25644, 279, F256, 33) (dual of [279, 235, 34]-code) | [i] | ✔ | |
24 | Linear OA(25632, 279, F256, 21) (dual of [279, 247, 22]-code) | [i] | ✔ | |
25 | Linear OA(25646, 281, F256, 34) (dual of [281, 235, 35]-code) | [i] | ✔ | |
26 | Linear OA(25633, 281, F256, 21) (dual of [281, 248, 22]-code) | [i] | ✔ | |
27 | Linear OA(25648, 283, F256, 35) (dual of [283, 235, 36]-code) | [i] | ✔ | |
28 | Linear OA(25634, 283, F256, 21) (dual of [283, 249, 22]-code) | [i] | ✔ | |
29 | Linear OA(25650, 285, F256, 36) (dual of [285, 235, 37]-code) | [i] | ✔ | |
30 | Linear OA(25652, 287, F256, 37) (dual of [287, 235, 38]-code) | [i] | ✔ | |
31 | Linear OA(25654, 289, F256, 38) (dual of [289, 235, 39]-code) | [i] | ✔ | |
32 | Linear OA(25656, 291, F256, 39) (dual of [291, 235, 40]-code) | [i] | ✔ | |
33 | Linear OA(25658, 293, F256, 40) (dual of [293, 235, 41]-code) | [i] | ✔ | |
34 | Linear OA(25660, 295, F256, 41) (dual of [295, 235, 42]-code) | [i] | ✔ | |
35 | Linear OA(25662, 297, F256, 42) (dual of [297, 235, 43]-code) | [i] | ✔ | |
36 | Linear OA(25668, 299, F256, 47) (dual of [299, 231, 48]-code) | [i] | ||
37 | Linear OA(25667, 299, F256, 46) (dual of [299, 232, 47]-code) | [i] | ||
38 | Linear OA(25666, 299, F256, 45) (dual of [299, 233, 46]-code) | [i] | ||
39 | Linear OA(25665, 299, F256, 44) (dual of [299, 234, 45]-code) | [i] | ||
40 | Linear OA(25664, 299, F256, 43) (dual of [299, 235, 44]-code) | [i] | ✔ | |
41 | Linear OA(25664, 299, F256, 43) (dual of [299, 235, 44]-code) | [i] | ||
42 | Linear OA(25663, 299, F256, 42) (dual of [299, 236, 43]-code) | [i] | ||
43 | Linear OA(25662, 299, F256, 41) (dual of [299, 237, 42]-code) | [i] | ||
44 | Linear OA(25661, 299, F256, 40) (dual of [299, 238, 41]-code) | [i] | ||
45 | Linear OA(25660, 299, F256, 39) (dual of [299, 239, 40]-code) | [i] | ||
46 | Linear OA(25659, 299, F256, 38) (dual of [299, 240, 39]-code) | [i] | ||
47 | Linear OA(25658, 299, F256, 37) (dual of [299, 241, 38]-code) | [i] | ||
48 | Linear OA(25657, 299, F256, 36) (dual of [299, 242, 37]-code) | [i] | ||
49 | Linear OA(25656, 299, F256, 35) (dual of [299, 243, 36]-code) | [i] | ||
50 | Linear OA(25655, 299, F256, 34) (dual of [299, 244, 35]-code) | [i] | ||
51 | Linear OA(25654, 299, F256, 33) (dual of [299, 245, 34]-code) | [i] | ||
52 | Linear OA(25666, 301, F256, 44) (dual of [301, 235, 45]-code) | [i] | ✔ | |
53 | Linear OA(25668, 303, F256, 45) (dual of [303, 235, 46]-code) | [i] | ✔ | |
54 | Linear OA(25667, 300, F256, 46) (dual of [300, 233, 47]-code) | [i] | Construction X with Algebraic-Geometric Codes | |
55 | Linear OA(25665, 300, F256, 44) (dual of [300, 235, 45]-code) | [i] | ||
56 | Linear OA(25663, 300, F256, 42) (dual of [300, 237, 43]-code) | [i] | ||
57 | Linear OA(25661, 300, F256, 40) (dual of [300, 239, 41]-code) | [i] | ||
58 | Linear OA(25659, 300, F256, 38) (dual of [300, 241, 39]-code) | [i] | ||
59 | Linear OA(25657, 300, F256, 36) (dual of [300, 243, 37]-code) | [i] | ||
60 | Linear OA(25655, 300, F256, 34) (dual of [300, 245, 35]-code) | [i] | ||
61 | Linear OA(25668, 300, F256, 47) (dual of [300, 232, 48]-code) | [i] | ||
62 | Linear OA(25666, 300, F256, 45) (dual of [300, 234, 46]-code) | [i] | ||
63 | Linear OA(25664, 300, F256, 43) (dual of [300, 236, 44]-code) | [i] | ||
64 | Linear OA(25662, 300, F256, 41) (dual of [300, 238, 42]-code) | [i] | ||
65 | Linear OA(25660, 300, F256, 39) (dual of [300, 240, 40]-code) | [i] | ||
66 | Linear OA(25658, 300, F256, 37) (dual of [300, 242, 38]-code) | [i] | ||
67 | Linear OA(25656, 300, F256, 35) (dual of [300, 244, 36]-code) | [i] | ||
68 | Linear OA(25654, 300, F256, 33) (dual of [300, 246, 34]-code) | [i] |