Information on Result #611422

Linear OA(2106, 128, F2, 47) (dual of [128, 22, 48]-code), using an extension Ce(46) of the primitive narrow-sense BCH-code C(I) with length 127 = 27−1, defining interval I = [1,46], and designed minimum distance d ≥ |I|+1 = 47

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(2106, 128, F2, 46) (dual of [128, 22, 47]-code) [i]Strength Reduction
2Linear OA(2106, 128, F2, 45) (dual of [128, 22, 46]-code) [i]
3Linear OA(2107, 129, F2, 47) (dual of [129, 22, 48]-code) [i]Code Embedding in Larger Space
4Linear OA(2108, 130, F2, 47) (dual of [130, 22, 48]-code) [i]
5Linear OA(2104, 126, F2, 45) (dual of [126, 22, 46]-code) [i]Truncation
6Linear OA(2103, 125, F2, 44) (dual of [125, 22, 45]-code) [i]
7Linear OA(259, 80, F2, 23) (dual of [80, 21, 24]-code) [i]Residual Code
8Linear OA(2107, 136, F2, 45) (dual of [136, 29, 46]-code) [i]Construction X with Extended Narrow-Sense BCH Codes
9Linear OA(2109, 132, F2, 47) (dual of [132, 23, 48]-code) [i]
10Linear OA(2110, 136, F2, 47) (dual of [136, 26, 48]-code) [i]
11Linear OA(2111, 140, F2, 47) (dual of [140, 29, 48]-code) [i]
12Linear OA(2149, 171, F2, 61) (dual of [171, 22, 62]-code) [i]
13Linear OA(2147, 166, F2, 63) (dual of [166, 19, 64]-code) [i]Construction XX with a Chain of Extended Narrow-Sense BCH Codes
14Linear OA(2144, 163, F2, 61) (dual of [163, 19, 62]-code) [i]
15Linear OA(2146, 164, F2, 63) (dual of [164, 18, 64]-code) [i]
16Linear OA(2143, 161, F2, 61) (dual of [161, 18, 62]-code) [i]
17Linear OA(2144, 161, F2, 63) (dual of [161, 17, 64]-code) [i]
18Linear OA(2141, 158, F2, 61) (dual of [158, 17, 62]-code) [i]
19Linear OA(2140, 156, F2, 63) (dual of [156, 16, 64]-code) [i]
20Linear OA(2137, 153, F2, 61) (dual of [153, 16, 62]-code) [i]
21Linear OA(2135, 162, F2, 55) (dual of [162, 27, 56]-code) [i]
22Linear OA(2131, 158, F2, 53) (dual of [158, 27, 54]-code) [i]
23Linear OA(2133, 159, F2, 55) (dual of [159, 26, 56]-code) [i]
24Linear OA(2130, 156, F2, 53) (dual of [156, 26, 54]-code) [i]
25Linear OA(2122, 148, F2, 49) (dual of [148, 26, 50]-code) [i]
26Linear OA(2132, 157, F2, 55) (dual of [157, 25, 56]-code) [i]
27Linear OA(2129, 154, F2, 53) (dual of [154, 25, 54]-code) [i]
28Linear OA(2121, 146, F2, 49) (dual of [146, 25, 50]-code) [i]
29Linear OA(2131, 155, F2, 55) (dual of [155, 24, 56]-code) [i]
30Linear OA(2128, 152, F2, 53) (dual of [152, 24, 54]-code) [i]
31Linear OA(2124, 148, F2, 51) (dual of [148, 24, 52]-code) [i]
32Linear OA(2120, 144, F2, 49) (dual of [144, 24, 50]-code) [i]
33Linear OA(2129, 152, F2, 55) (dual of [152, 23, 56]-code) [i]
34Linear OA(2126, 149, F2, 53) (dual of [149, 23, 54]-code) [i]
35Linear OA(2122, 145, F2, 51) (dual of [145, 23, 52]-code) [i]
36Linear OA(2118, 141, F2, 49) (dual of [141, 23, 50]-code) [i]
37Linear OA(2125, 156, F2, 45) (dual of [156, 31, 46]-code) [i]
38Linear OA(2123, 153, F2, 47) (dual of [153, 30, 48]-code) [i]
39Linear OA(2119, 149, F2, 45) (dual of [149, 30, 46]-code) [i]
40Linear OOA(2106, 64, F2, 2, 47) (dual of [(64, 2), 22, 48]-NRT-code) [i]OOA Folding