Information on Result #612887
Linear OA(467, 256, F4, 23) (dual of [256, 189, 24]-code), using an extension Ce(22) of the primitive narrow-sense BCH-code C(I) with length 255 = 44−1, defining interval I = [1,22], and designed minimum distance d ≥ |I|+1 = 23
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(472, 261, F4, 25) (dual of [261, 189, 26]-code) | [i] | ✔ | Construction X with Extended Narrow-Sense BCH Codes |
2 | Linear OA(467, 260, F4, 23) (dual of [260, 193, 24]-code) | [i] | ✔ | |
3 | Linear OA(478, 267, F4, 26) (dual of [267, 189, 27]-code) | [i] | ✔ | |
4 | Linear OA(468, 265, F4, 23) (dual of [265, 197, 24]-code) | [i] | ✔ | |
5 | Linear OA(483, 272, F4, 27) (dual of [272, 189, 28]-code) | [i] | ✔ | |
6 | Linear OA(471, 272, F4, 23) (dual of [272, 201, 24]-code) | [i] | ✔ | |
7 | Linear OA(492, 280, F4, 29) (dual of [280, 188, 30]-code) | [i] | ✔ | |
8 | Linear OA(493, 282, F4, 29) (dual of [282, 189, 30]-code) | [i] | ✔ | |
9 | Linear OA(489, 277, F4, 28) (dual of [277, 188, 29]-code) | [i] | ✔ | |
10 | Linear OA(490, 279, F4, 28) (dual of [279, 189, 29]-code) | [i] | ✔ | |
11 | Linear OA(473, 277, F4, 23) (dual of [277, 204, 24]-code) | [i] | ✔ | |
12 | Linear OA(474, 279, F4, 23) (dual of [279, 205, 24]-code) | [i] | ✔ | |
13 | Linear OA(477, 284, F4, 23) (dual of [284, 207, 24]-code) | [i] | ✔ | |
14 | Linear OA(498, 286, F4, 30) (dual of [286, 188, 31]-code) | [i] | ✔ | Construction XX with a Chain of Extended Narrow-Sense BCH Codes |
15 | Linear OA(497, 284, F4, 30) (dual of [284, 187, 31]-code) | [i] | ✔ | |
16 | Linear OA(496, 282, F4, 30) (dual of [282, 186, 31]-code) | [i] | ✔ | |
17 | Linear OA(491, 278, F4, 29) (dual of [278, 187, 30]-code) | [i] | ✔ | |
18 | Linear OA(489, 275, F4, 29) (dual of [275, 186, 30]-code) | [i] | ✔ | |
19 | Linear OA(492, 283, F4, 28) (dual of [283, 191, 29]-code) | [i] | ✔ | |
20 | Linear OA(494, 284, F4, 29) (dual of [284, 190, 30]-code) | [i] | ✔ | |
21 | Linear OA(491, 281, F4, 28) (dual of [281, 190, 29]-code) | [i] | ✔ | |
22 | Linear OA(482, 268, F4, 27) (dual of [268, 186, 28]-code) | [i] | ✔ | |
23 | Linear OA(484, 274, F4, 27) (dual of [274, 190, 28]-code) | [i] | ✔ | |
24 | Linear OA(477, 263, F4, 26) (dual of [263, 186, 27]-code) | [i] | ✔ | |
25 | Linear OA(473, 263, F4, 25) (dual of [263, 190, 26]-code) | [i] | ✔ | |
26 | Linear OA(470, 268, F4, 23) (dual of [268, 198, 24]-code) | [i] | ✔ | |
27 | Linear OA(472, 274, F4, 23) (dual of [274, 202, 24]-code) | [i] | ✔ | |
28 | Linear OA(476, 283, F4, 23) (dual of [283, 207, 24]-code) | [i] | ✔ | |
29 | Linear OA(475, 281, F4, 23) (dual of [281, 206, 24]-code) | [i] | ✔ |