Information on Result #621670

Linear OA(230, 39, F2, 15) (dual of [39, 9, 16]-code), using construction X applied to C2 ⊂ C1 based on
  1. linear OA(226, 31, F2, 15) (dual of [31, 5, 16]-code), using code C2 for u = 5 by de Boer and Brouwer [i]
  2. linear OA(221, 31, F2, 11) (dual of [31, 10, 12]-code), using code C1 for u = 5 by de Boer and Brouwer [i]
  3. linear OA(24, 8, F2, 3) (dual of [8, 4, 4]-code or 8-cap in PG(3,2)), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(2136, 164, F2, 47) (dual of [164, 28, 48]-code) [i]Construction X with De Boer–Brouwer Codes
2Linear OA(2150, 166, F2, 63) (dual of [166, 16, 64]-code) [i]
3Linear OA(2135, 164, F2, 46) (dual of [164, 29, 47]-code) [i]
4Linear OA(2177, 205, F2, 56) (dual of [205, 28, 57]-code) [i]Construction XX with a Chain of De Boer–Brouwer Codes
5Linear OA(2156, 184, F2, 51) (dual of [184, 28, 52]-code) [i]
6Linear OA(2151, 179, F2, 49) (dual of [179, 28, 50]-code) [i]
7Linear OA(2155, 184, F2, 50) (dual of [184, 29, 51]-code) [i]
8Linear OA(2150, 179, F2, 48) (dual of [179, 29, 49]-code) [i]
9Linear OOA(230, 13, F2, 3, 15) (dual of [(13, 3), 9, 16]-NRT-code) [i]OOA Folding