Information on Result #622026

Linear OA(3133, 144, F3, 80) (dual of [144, 11, 81]-code), using construction XX applied toC2 ⊂ C1 ⊂ D1 based on
  1. linear OA(3116, 121, F3, 80) (dual of [121, 5, 81]-code), using code C2 for u = 5 by de Boer and Brouwer [i]
  2. linear OA(3111, 121, F3, 71) (dual of [121, 10, 72]-code), using code C1 for u = 5 by de Boer and Brouwer [i]
  3. linear OA(3110, 121, F3, 66) (dual of [121, 11, 67]-code), using augmented code D1 for u = 5 by de Boer and Brouwer [i]
  4. linear OA(312, 18, F3, 8) (dual of [18, 6, 9]-code), using
  5. linear OA(34, 5, F3, 4) (dual of [5, 1, 5]-code or 5-arc in PG(3,3)), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(3133, 144, F3, 79) (dual of [144, 11, 80]-code) [i]Strength Reduction
2Linear OA(3133, 144, F3, 78) (dual of [144, 11, 79]-code) [i]
3Linear OA(3130, 141, F3, 77) (dual of [141, 11, 78]-code) [i]Truncation
4Linear OA(3129, 140, F3, 76) (dual of [140, 11, 77]-code) [i]
5Linear OA(3128, 139, F3, 75) (dual of [139, 11, 76]-code) [i]
6Linear OA(3125, 136, F3, 72) (dual of [136, 11, 73]-code) [i]
7Linear OOA(3133, 48, F3, 3, 80) (dual of [(48, 3), 11, 81]-NRT-code) [i]OOA Folding