Information on Result #622565
Linear OA(2514, 52, F25, 11) (dual of [52, 38, 12]-code), using extended algebraic-geometric code AGe(F,40P) based on function field F/F25 with g(F) = 3 and N(F) ≥ 52, using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(2559, 678, F25, 23) (dual of [678, 619, 24]-code) | [i] | (u, u+v)-Construction | |
2 | Linear OA(2581, 15678, F25, 23) (dual of [15678, 15597, 24]-code) | [i] | ||
3 | Linear OA(25103, 390678, F25, 23) (dual of [390678, 390575, 24]-code) | [i] | ||
4 | Linear OA(2557, 677, F25, 22) (dual of [677, 620, 23]-code) | [i] | ||
5 | Linear OA(2578, 15677, F25, 22) (dual of [15677, 15599, 23]-code) | [i] | ||
6 | Linear OA(2599, 390677, F25, 22) (dual of [390677, 390578, 23]-code) | [i] | ||
7 | Linear OA(2559, 680, F25, 23) (dual of [680, 621, 24]-code) | [i] | ||
8 | Linear OA(2581, 15680, F25, 23) (dual of [15680, 15599, 24]-code) | [i] | ||
9 | Linear OA(2557, 680, F25, 22) (dual of [680, 623, 23]-code) | [i] | ||
10 | Linear OA(2578, 15680, F25, 22) (dual of [15680, 15602, 23]-code) | [i] | ||
11 | Linear OA(2588, 15704, F25, 23) (dual of [15704, 15616, 24]-code) | [i] | (u, u−v, u+v+w)-Construction | |
12 | Linear OA(25110, 390704, F25, 23) (dual of [390704, 390594, 24]-code) | [i] | ||
13 | Linear OA(25105, 15676, F25, 31) (dual of [15676, 15571, 32]-code) | [i] | Construction X with Cyclic Codes | |
14 | Linear OA(25107, 664, F25, 47) (dual of [664, 557, 48]-code) | [i] | ||
15 | Linear OA(25103, 664, F25, 45) (dual of [664, 561, 46]-code) | [i] | ||
16 | Linear OA(2599, 664, F25, 43) (dual of [664, 565, 44]-code) | [i] | ||
17 | Linear OA(2595, 664, F25, 41) (dual of [664, 569, 42]-code) | [i] | ||
18 | Linear OA(2591, 664, F25, 39) (dual of [664, 573, 40]-code) | [i] | ||
19 | Linear OA(2587, 664, F25, 37) (dual of [664, 577, 38]-code) | [i] | ||
20 | Linear OA(2583, 664, F25, 35) (dual of [664, 581, 36]-code) | [i] | ||
21 | Linear OA(2579, 664, F25, 33) (dual of [664, 585, 34]-code) | [i] | ||
22 | Linear OA(2575, 664, F25, 31) (dual of [664, 589, 32]-code) | [i] | ||
23 | Linear OA(25108, 15672, F25, 33) (dual of [15672, 15564, 34]-code) | [i] | Construction X with Extended Narrow-Sense BCH Codes | |
24 | Linear OA(25105, 15672, F25, 32) (dual of [15672, 15567, 33]-code) | [i] | ||
25 | Linear OA(25102, 15672, F25, 31) (dual of [15672, 15570, 32]-code) | [i] | ||
26 | Linear OA(2599, 15672, F25, 30) (dual of [15672, 15573, 31]-code) | [i] | ||
27 | Linear OA(2596, 15672, F25, 29) (dual of [15672, 15576, 30]-code) | [i] | ||
28 | Linear OA(2593, 15672, F25, 28) (dual of [15672, 15579, 29]-code) | [i] | ||
29 | Linear OA(2590, 15672, F25, 27) (dual of [15672, 15582, 28]-code) | [i] | ||
30 | Linear OA(2587, 15672, F25, 26) (dual of [15672, 15585, 27]-code) | [i] | ||
31 | Linear OA(2584, 15675, F25, 24) (dual of [15675, 15591, 25]-code) | [i] | ||
32 | Linear OA(25110, 659, F25, 52) (dual of [659, 549, 53]-code) | [i] | ||
33 | Linear OA(25110, 661, F25, 51) (dual of [661, 551, 52]-code) | [i] | ||
34 | Linear OA(2582, 660, F25, 36) (dual of [660, 578, 37]-code) | [i] | ||
35 | Linear OA(2580, 660, F25, 35) (dual of [660, 580, 36]-code) | [i] | ||
36 | Linear OA(2578, 660, F25, 34) (dual of [660, 582, 35]-code) | [i] | ||
37 | Linear OA(2576, 660, F25, 33) (dual of [660, 584, 34]-code) | [i] | ||
38 | Linear OA(2574, 660, F25, 32) (dual of [660, 586, 33]-code) | [i] | ||
39 | Linear OA(2572, 660, F25, 31) (dual of [660, 588, 32]-code) | [i] | ||
40 | Linear OA(2570, 660, F25, 30) (dual of [660, 590, 31]-code) | [i] | ||
41 | Linear OA(2568, 660, F25, 29) (dual of [660, 592, 30]-code) | [i] | ||
42 | Linear OA(2566, 660, F25, 28) (dual of [660, 594, 29]-code) | [i] | ||
43 | Linear OA(2564, 660, F25, 27) (dual of [660, 596, 28]-code) | [i] | ||
44 | Linear OA(2563, 661, F25, 26) (dual of [661, 598, 27]-code) | [i] | ||
45 | Linear OA(25110, 663, F25, 50) (dual of [663, 553, 51]-code) | [i] | ||
46 | Linear OA(25108, 663, F25, 49) (dual of [663, 555, 50]-code) | [i] | ||
47 | Linear OA(25106, 663, F25, 48) (dual of [663, 557, 49]-code) | [i] | ||
48 | Linear OA(25104, 663, F25, 47) (dual of [663, 559, 48]-code) | [i] | ||
49 | Linear OA(25102, 663, F25, 46) (dual of [663, 561, 47]-code) | [i] | ||
50 | Linear OA(25100, 663, F25, 45) (dual of [663, 563, 46]-code) | [i] | ||
51 | Linear OA(2598, 663, F25, 44) (dual of [663, 565, 45]-code) | [i] | ||
52 | Linear OA(2596, 663, F25, 43) (dual of [663, 567, 44]-code) | [i] | ||
53 | Linear OA(2594, 663, F25, 42) (dual of [663, 569, 43]-code) | [i] | ||
54 | Linear OA(2592, 663, F25, 41) (dual of [663, 571, 42]-code) | [i] | ||
55 | Linear OA(2590, 663, F25, 40) (dual of [663, 573, 41]-code) | [i] | ||
56 | Linear OA(2588, 663, F25, 39) (dual of [663, 575, 40]-code) | [i] | ||
57 | Linear OA(2586, 662, F25, 38) (dual of [662, 576, 39]-code) | [i] | ||
58 | Linear OA(2561, 663, F25, 24) (dual of [663, 602, 25]-code) | [i] |