Information on Result #644202

Linear OA(846, 64, F8, 32) (dual of [64, 18, 33]-code), using algebraic-geometric code AG(F,31P) based on function field F/F8 with g(F) = 14 and N(F) ≥ 65, using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(8110, 128, F8, 65) (dual of [128, 18, 66]-code) [i]Repeating Each Code Word
2Linear OA(8109, 126, F8, 65) (dual of [126, 17, 66]-code) [i]
3Linear OA(2202, 256, F2, 65) (dual of [256, 54, 66]-code) [i]Concatenation of Two Codes
4Linear OA(2201, 252, F2, 65) (dual of [252, 51, 66]-code) [i]
5Linear OA(849, 67, F8, 34) (dual of [67, 18, 35]-code) [i]Construction X with Algebraic-Geometric Codes
6Linear OA(847, 67, F8, 32) (dual of [67, 20, 33]-code) [i]
7Linear OA(851, 69, F8, 35) (dual of [69, 18, 36]-code) [i]
8Linear OA(848, 69, F8, 32) (dual of [69, 21, 33]-code) [i]
9Linear OA(853, 71, F8, 36) (dual of [71, 18, 37]-code) [i]
10Linear OA(849, 71, F8, 32) (dual of [71, 22, 33]-code) [i]
11Linear OA(855, 73, F8, 37) (dual of [73, 18, 38]-code) [i]
12Linear OA(850, 73, F8, 32) (dual of [73, 23, 33]-code) [i]
13Linear OA(858, 76, F8, 38) (dual of [76, 18, 39]-code) [i]
14Linear OA(852, 76, F8, 32) (dual of [76, 24, 33]-code) [i]
15Linear OA(860, 78, F8, 39) (dual of [78, 18, 40]-code) [i]
16Linear OA(853, 78, F8, 32) (dual of [78, 25, 33]-code) [i]
17Linear OA(863, 81, F8, 40) (dual of [81, 18, 41]-code) [i]
18Linear OA(855, 81, F8, 32) (dual of [81, 26, 33]-code) [i]
19Linear OA(866, 84, F8, 41) (dual of [84, 18, 42]-code) [i]
20Linear OA(857, 84, F8, 32) (dual of [84, 27, 33]-code) [i]
21Linear OA(868, 86, F8, 42) (dual of [86, 18, 43]-code) [i]
22Linear OA(858, 86, F8, 32) (dual of [86, 28, 33]-code) [i]
23Linear OA(870, 88, F8, 43) (dual of [88, 18, 44]-code) [i]
24Linear OA(859, 88, F8, 32) (dual of [88, 29, 33]-code) [i]
25Linear OA(854, 72, F8, 37) (dual of [72, 18, 38]-code) [i]
26Linear OA(857, 75, F8, 38) (dual of [75, 18, 39]-code) [i]
27Linear OA(859, 77, F8, 39) (dual of [77, 18, 40]-code) [i]
28Linear OA(863, 81, F8, 41) (dual of [81, 18, 42]-code) [i]
29Linear OA(867, 85, F8, 42) (dual of [85, 18, 43]-code) [i]
30Linear OA(869, 87, F8, 43) (dual of [87, 18, 44]-code) [i]
31Linear OA(874, 92, F8, 45) (dual of [92, 18, 46]-code) [i]
32Linear OA(872, 90, F8, 44) (dual of [90, 18, 45]-code) [i]
33Linear OA(854, 80, F8, 32) (dual of [80, 26, 33]-code) [i]
34Linear OA(856, 83, F8, 32) (dual of [83, 27, 33]-code) [i]
35Linear OA(873, 91, F8, 44) (dual of [91, 18, 45]-code) [i]Construction XX with a Chain of Algebraic-Geometric Codes
36Linear OA(871, 91, F8, 42) (dual of [91, 20, 43]-code) [i]
37Linear OA(861, 91, F8, 32) (dual of [91, 30, 33]-code) [i]
38Linear OA(876, 94, F8, 46) (dual of [94, 18, 47]-code) [i]
39Linear OA(873, 91, F8, 45) (dual of [91, 18, 46]-code) [i]
40Linear OA(871, 89, F8, 44) (dual of [89, 18, 45]-code) [i]
41Linear OA(873, 92, F8, 44) (dual of [92, 19, 45]-code) [i]
42Linear OA(870, 89, F8, 43) (dual of [89, 19, 44]-code) [i]
43Linear OA(872, 93, F8, 42) (dual of [93, 21, 43]-code) [i]
44Linear OA(861, 79, F8, 40) (dual of [79, 18, 41]-code) [i]
45Linear OA(863, 82, F8, 40) (dual of [82, 19, 41]-code) [i]
46Linear OA(860, 79, F8, 39) (dual of [79, 19, 40]-code) [i]
47Linear OA(856, 74, F8, 38) (dual of [74, 18, 39]-code) [i]
48Linear OA(855, 74, F8, 37) (dual of [74, 19, 38]-code) [i]
49Linear OA(862, 80, F8, 41) (dual of [80, 18, 42]-code) [i]
50Linear OA(862, 81, F8, 40) (dual of [81, 19, 41]-code) [i]
51Linear OOA(846, 32, F8, 2, 32) (dual of [(32, 2), 18, 33]-NRT-code) [i]OOA Folding