Information on Result #669979

Linear OA(6443, 262272, F64, 12) (dual of [262272, 262229, 13]-code), using (u, u+v)-construction based on
  1. linear OA(649, 128, F64, 6) (dual of [128, 119, 7]-code), using
    • generalized (u, u+v)-construction [i] based on
      1. linear OA(640, 2, F64, 0) (dual of [2, 2, 1]-code), using
      2. linear OA(640, 2, F64, 0) (dual of [2, 2, 1]-code) (see above)
      3. linear OA(640, 2, F64, 0) (dual of [2, 2, 1]-code) (see above)
      4. linear OA(640, 2, F64, 0) (dual of [2, 2, 1]-code) (see above)
      5. linear OA(640, 2, F64, 0) (dual of [2, 2, 1]-code) (see above)
      6. linear OA(640, 2, F64, 0) (dual of [2, 2, 1]-code) (see above)
      7. linear OA(640, 2, F64, 0) (dual of [2, 2, 1]-code) (see above)
      8. linear OA(640, 2, F64, 0) (dual of [2, 2, 1]-code) (see above)
      9. linear OA(640, 2, F64, 0) (dual of [2, 2, 1]-code) (see above)
      10. linear OA(640, 2, F64, 0) (dual of [2, 2, 1]-code) (see above)
      11. linear OA(640, 2, F64, 0) (dual of [2, 2, 1]-code) (see above)
      12. linear OA(640, 2, F64, 0) (dual of [2, 2, 1]-code) (see above)
      13. linear OA(640, 2, F64, 0) (dual of [2, 2, 1]-code) (see above)
      14. linear OA(640, 2, F64, 0) (dual of [2, 2, 1]-code) (see above)
      15. linear OA(640, 2, F64, 0) (dual of [2, 2, 1]-code) (see above)
      16. linear OA(640, 2, F64, 0) (dual of [2, 2, 1]-code) (see above)
      17. linear OA(640, 2, F64, 0) (dual of [2, 2, 1]-code) (see above)
      18. linear OA(640, 2, F64, 0) (dual of [2, 2, 1]-code) (see above)
      19. linear OA(640, 2, F64, 0) (dual of [2, 2, 1]-code) (see above)
      20. linear OA(640, 2, F64, 0) (dual of [2, 2, 1]-code) (see above)
      21. linear OA(640, 2, F64, 0) (dual of [2, 2, 1]-code) (see above)
      22. linear OA(640, 2, F64, 0) (dual of [2, 2, 1]-code) (see above)
      23. linear OA(640, 2, F64, 0) (dual of [2, 2, 1]-code) (see above)
      24. linear OA(640, 2, F64, 0) (dual of [2, 2, 1]-code) (see above)
      25. linear OA(640, 2, F64, 0) (dual of [2, 2, 1]-code) (see above)
      26. linear OA(640, 2, F64, 0) (dual of [2, 2, 1]-code) (see above)
      27. linear OA(640, 2, F64, 0) (dual of [2, 2, 1]-code) (see above)
      28. linear OA(640, 2, F64, 0) (dual of [2, 2, 1]-code) (see above)
      29. linear OA(640, 2, F64, 0) (dual of [2, 2, 1]-code) (see above)
      30. linear OA(640, 2, F64, 0) (dual of [2, 2, 1]-code) (see above)
      31. linear OA(640, 2, F64, 0) (dual of [2, 2, 1]-code) (see above)
      32. linear OA(640, 2, F64, 0) (dual of [2, 2, 1]-code) (see above)
      33. linear OA(640, 2, F64, 0) (dual of [2, 2, 1]-code) (see above)
      34. linear OA(640, 2, F64, 0) (dual of [2, 2, 1]-code) (see above)
      35. linear OA(640, 2, F64, 0) (dual of [2, 2, 1]-code) (see above)
      36. linear OA(640, 2, F64, 0) (dual of [2, 2, 1]-code) (see above)
      37. linear OA(640, 2, F64, 0) (dual of [2, 2, 1]-code) (see above)
      38. linear OA(640, 2, F64, 0) (dual of [2, 2, 1]-code) (see above)
      39. linear OA(640, 2, F64, 0) (dual of [2, 2, 1]-code) (see above)
      40. linear OA(640, 2, F64, 0) (dual of [2, 2, 1]-code) (see above)
      41. linear OA(640, 2, F64, 0) (dual of [2, 2, 1]-code) (see above)
      42. linear OA(640, 2, F64, 0) (dual of [2, 2, 1]-code) (see above)
      43. linear OA(640, 2, F64, 0) (dual of [2, 2, 1]-code) (see above)
      44. linear OA(640, 2, F64, 0) (dual of [2, 2, 1]-code) (see above)
      45. linear OA(640, 2, F64, 0) (dual of [2, 2, 1]-code) (see above)
      46. linear OA(640, 2, F64, 0) (dual of [2, 2, 1]-code) (see above)
      47. linear OA(640, 2, F64, 0) (dual of [2, 2, 1]-code) (see above)
      48. linear OA(640, 2, F64, 0) (dual of [2, 2, 1]-code) (see above)
      49. linear OA(640, 2, F64, 0) (dual of [2, 2, 1]-code) (see above)
      50. linear OA(640, 2, F64, 0) (dual of [2, 2, 1]-code) (see above)
      51. linear OA(640, 2, F64, 0) (dual of [2, 2, 1]-code) (see above)
      52. linear OA(640, 2, F64, 0) (dual of [2, 2, 1]-code) (see above)
      53. linear OA(640, 2, F64, 0) (dual of [2, 2, 1]-code) (see above)
      54. linear OA(640, 2, F64, 0) (dual of [2, 2, 1]-code) (see above)
      55. linear OA(640, 2, F64, 0) (dual of [2, 2, 1]-code) (see above)
      56. linear OA(640, 2, F64, 0) (dual of [2, 2, 1]-code) (see above)
      57. linear OA(640, 2, F64, 0) (dual of [2, 2, 1]-code) (see above)
      58. linear OA(640, 2, F64, 0) (dual of [2, 2, 1]-code) (see above)
      59. linear OA(641, 2, F64, 1) (dual of [2, 1, 2]-code), using
      60. linear OA(641, 2, F64, 1) (dual of [2, 1, 2]-code) (see above)
      61. linear OA(641, 2, F64, 1) (dual of [2, 1, 2]-code) (see above)
      62. linear OA(642, 2, F64, 2) (dual of [2, 0, 3]-code or 2-arc in PG(1,64)), using
      63. linear OA(642, 2, F64, 2) (dual of [2, 0, 3]-code or 2-arc in PG(1,64)) (see above)
      64. linear OA(642, 2, F64, 2) (dual of [2, 0, 3]-code or 2-arc in PG(1,64)) (see above)
  2. linear OA(6434, 262144, F64, 12) (dual of [262144, 262110, 13]-code), using
    • an extension Ce(11) of the primitive narrow-sense BCH-code C(I) with length 262143 = 643−1, defining interval I = [1,11], and designed minimum distance d ≥ |I|+1 = 12 [i]

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

None.