Information on Result #673609

Linear OA(2134, 265, F2, 39) (dual of [265, 131, 40]-code), using construction X applied to Ce(38) ⊂ Ce(36) based on
  1. linear OA(2133, 256, F2, 39) (dual of [256, 123, 40]-code), using an extension Ce(38) of the primitive narrow-sense BCH-code C(I) with length 255 = 28−1, defining interval I = [1,38], and designed minimum distance d ≥ |I|+1 = 39 [i]
  2. linear OA(2125, 256, F2, 37) (dual of [256, 131, 38]-code), using an extension Ce(36) of the primitive narrow-sense BCH-code C(I) with length 255 = 28−1, defining interval I = [1,36], and designed minimum distance d ≥ |I|+1 = 37 [i]
  3. linear OA(21, 9, F2, 1) (dual of [9, 8, 2]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(2134, 265, F2, 38) (dual of [265, 131, 39]-code) [i]Strength Reduction
2Linear OA(2135, 266, F2, 39) (dual of [266, 131, 40]-code) [i]Code Embedding in Larger Space
3Linear OA(2136, 267, F2, 39) (dual of [267, 131, 40]-code) [i]
4Linear OA(2137, 268, F2, 39) (dual of [268, 131, 40]-code) [i]
5Linear OA(2138, 269, F2, 39) (dual of [269, 131, 40]-code) [i]
6Linear OA(2139, 270, F2, 39) (dual of [270, 131, 40]-code) [i]
7Linear OA(2133, 264, F2, 38) (dual of [264, 131, 39]-code) [i]Truncation
8Linear OOA(2134, 132, F2, 2, 39) (dual of [(132, 2), 130, 40]-NRT-code) [i]OOA Folding
9Linear OOA(2134, 88, F2, 3, 39) (dual of [(88, 3), 130, 40]-NRT-code) [i]
10Linear OOA(2134, 66, F2, 4, 39) (dual of [(66, 4), 130, 40]-NRT-code) [i]
11Linear OOA(2134, 53, F2, 5, 39) (dual of [(53, 5), 131, 40]-NRT-code) [i]