Information on Result #674575
Linear OA(3235, 531483, F3, 29) (dual of [531483, 531248, 30]-code), using construction X applied to Ce(28) ⊂ Ce(24) based on
- linear OA(3229, 531441, F3, 29) (dual of [531441, 531212, 30]-code), using an extension Ce(28) of the primitive narrow-sense BCH-code C(I) with length 531440 = 312−1, defining interval I = [1,28], and designed minimum distance d ≥ |I|+1 = 29 [i]
- linear OA(3193, 531441, F3, 25) (dual of [531441, 531248, 26]-code), using an extension Ce(24) of the primitive narrow-sense BCH-code C(I) with length 531440 = 312−1, defining interval I = [1,24], and designed minimum distance d ≥ |I|+1 = 25 [i]
- linear OA(36, 42, F3, 3) (dual of [42, 36, 4]-code or 42-cap in PG(5,3)), using
- discarding factors / shortening the dual code based on linear OA(36, 48, F3, 3) (dual of [48, 42, 4]-code or 48-cap in PG(5,3)), using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(3236, 531484, F3, 29) (dual of [531484, 531248, 30]-code) | [i] | Code Embedding in Larger Space | |
2 | Linear OA(3237, 531485, F3, 29) (dual of [531485, 531248, 30]-code) | [i] | ||
3 | Linear OA(3238, 531486, F3, 29) (dual of [531486, 531248, 30]-code) | [i] | ||
4 | Linear OA(3239, 531487, F3, 29) (dual of [531487, 531248, 30]-code) | [i] | ||
5 | Linear OOA(3235, 265741, F3, 2, 29) (dual of [(265741, 2), 531247, 30]-NRT-code) | [i] | OOA Folding | |
6 | Linear OOA(3235, 177161, F3, 3, 29) (dual of [(177161, 3), 531248, 30]-NRT-code) | [i] | ||
7 | Linear OOA(3235, 132870, F3, 4, 29) (dual of [(132870, 4), 531245, 30]-NRT-code) | [i] | ||
8 | Linear OOA(3235, 106296, F3, 5, 29) (dual of [(106296, 5), 531245, 30]-NRT-code) | [i] | ||
9 | Linear OOA(3235, 37963, F3, 29, 29) (dual of [(37963, 29), 1100692, 30]-NRT-code) | [i] | OOA Folding and Stacking with Additional Row |