Information on Result #677562

Linear OA(3159, 160, F3, 159) (dual of [160, 1, 160]-code or 160-arc in PG(158,3)), using the narrow-sense BCH-code C(I) with length 160 | 38−1, defining interval I = [1,159], and designed minimum distance d ≥ |I|+1 = 160

Mode: Constructive and linear.

This result is hidden, because other results with identical parameters exist.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(3159, 160, F3, 158) (dual of [160, 1, 159]-code) [i]Strength Reduction
2Linear OA(3159, 160, F3, 157) (dual of [160, 1, 158]-code) [i]
3Linear OA(3159, 160, F3, 156) (dual of [160, 1, 157]-code) [i]
4Linear OA(3159, 160, F3, 155) (dual of [160, 1, 156]-code) [i]
5Linear OA(3159, 160, F3, 154) (dual of [160, 1, 155]-code) [i]
6Linear OA(3159, 160, F3, 153) (dual of [160, 1, 154]-code) [i]
7Linear OA(3159, 160, F3, 152) (dual of [160, 1, 153]-code) [i]
8Linear OA(3159, 160, F3, 151) (dual of [160, 1, 152]-code) [i]
9Linear OA(3159, 160, F3, 150) (dual of [160, 1, 151]-code) [i]
10Linear OA(3159, 160, F3, 149) (dual of [160, 1, 150]-code) [i]
11Linear OA(3159, 160, F3, 148) (dual of [160, 1, 149]-code) [i]
12Linear OA(3159, 160, F3, 147) (dual of [160, 1, 148]-code) [i]
13Linear OA(3159, 160, F3, 146) (dual of [160, 1, 147]-code) [i]
14Linear OA(3159, 160, F3, 145) (dual of [160, 1, 146]-code) [i]
15Linear OA(3159, 160, F3, 144) (dual of [160, 1, 145]-code) [i]
16Linear OA(3159, 160, F3, 143) (dual of [160, 1, 144]-code) [i]
17Linear OA(3159, 160, F3, 142) (dual of [160, 1, 143]-code) [i]
18Linear OA(3159, 160, F3, 141) (dual of [160, 1, 142]-code) [i]
19Linear OA(3159, 160, F3, 140) (dual of [160, 1, 141]-code) [i]
20Linear OA(3159, 160, F3, 139) (dual of [160, 1, 140]-code) [i]
21Linear OA(3159, 160, F3, 138) (dual of [160, 1, 139]-code) [i]
22Linear OA(3159, 160, F3, 137) (dual of [160, 1, 138]-code) [i]
23Linear OA(3159, 160, F3, 136) (dual of [160, 1, 137]-code) [i]
24Linear OA(3159, 160, F3, 135) (dual of [160, 1, 136]-code) [i]
25Linear OA(3159, 160, F3, 134) (dual of [160, 1, 135]-code) [i]
26Linear OA(3159, 160, F3, 133) (dual of [160, 1, 134]-code) [i]
27Linear OA(3159, 160, F3, 132) (dual of [160, 1, 133]-code) [i]
28Linear OA(3159, 160, F3, 131) (dual of [160, 1, 132]-code) [i]
29Linear OA(3159, 160, F3, 130) (dual of [160, 1, 131]-code) [i]
30Linear OA(3159, 160, F3, 129) (dual of [160, 1, 130]-code) [i]
31Linear OA(3159, 160, F3, 128) (dual of [160, 1, 129]-code) [i]
32Linear OA(3159, 160, F3, 127) (dual of [160, 1, 128]-code) [i]
33Linear OA(3159, 160, F3, 126) (dual of [160, 1, 127]-code) [i]
34Linear OA(3159, 160, F3, 125) (dual of [160, 1, 126]-code) [i]
35Linear OA(3159, 160, F3, 124) (dual of [160, 1, 125]-code) [i]
36Linear OA(3159, 160, F3, 123) (dual of [160, 1, 124]-code) [i]
37Linear OA(3159, 160, F3, 122) (dual of [160, 1, 123]-code) [i]
38Linear OA(3159, 160, F3, 121) (dual of [160, 1, 122]-code) [i]
39Linear OA(3159, 160, F3, 120) (dual of [160, 1, 121]-code) [i]
40Linear OA(379, 80, F3, 79) (dual of [80, 1, 80]-code or 80-arc in PG(78,3)) [i]Contraction (with Narrow-Sense BCH-Code)