Information on Result #677562
Linear OA(3159, 160, F3, 159) (dual of [160, 1, 160]-code or 160-arc in PG(158,3)), using the narrow-sense BCH-code C(I) with length 160 | 38−1, defining interval I = [1,159], and designed minimum distance d ≥ |I|+1 = 160
Mode: Constructive and linear.
This result is hidden, because other results with identical parameters exist.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(3159, 160, F3, 158) (dual of [160, 1, 159]-code) | [i] | Strength Reduction | |
2 | Linear OA(3159, 160, F3, 157) (dual of [160, 1, 158]-code) | [i] | ||
3 | Linear OA(3159, 160, F3, 156) (dual of [160, 1, 157]-code) | [i] | ||
4 | Linear OA(3159, 160, F3, 155) (dual of [160, 1, 156]-code) | [i] | ||
5 | Linear OA(3159, 160, F3, 154) (dual of [160, 1, 155]-code) | [i] | ||
6 | Linear OA(3159, 160, F3, 153) (dual of [160, 1, 154]-code) | [i] | ||
7 | Linear OA(3159, 160, F3, 152) (dual of [160, 1, 153]-code) | [i] | ||
8 | Linear OA(3159, 160, F3, 151) (dual of [160, 1, 152]-code) | [i] | ||
9 | Linear OA(3159, 160, F3, 150) (dual of [160, 1, 151]-code) | [i] | ||
10 | Linear OA(3159, 160, F3, 149) (dual of [160, 1, 150]-code) | [i] | ||
11 | Linear OA(3159, 160, F3, 148) (dual of [160, 1, 149]-code) | [i] | ||
12 | Linear OA(3159, 160, F3, 147) (dual of [160, 1, 148]-code) | [i] | ||
13 | Linear OA(3159, 160, F3, 146) (dual of [160, 1, 147]-code) | [i] | ||
14 | Linear OA(3159, 160, F3, 145) (dual of [160, 1, 146]-code) | [i] | ||
15 | Linear OA(3159, 160, F3, 144) (dual of [160, 1, 145]-code) | [i] | ||
16 | Linear OA(3159, 160, F3, 143) (dual of [160, 1, 144]-code) | [i] | ||
17 | Linear OA(3159, 160, F3, 142) (dual of [160, 1, 143]-code) | [i] | ||
18 | Linear OA(3159, 160, F3, 141) (dual of [160, 1, 142]-code) | [i] | ||
19 | Linear OA(3159, 160, F3, 140) (dual of [160, 1, 141]-code) | [i] | ||
20 | Linear OA(3159, 160, F3, 139) (dual of [160, 1, 140]-code) | [i] | ||
21 | Linear OA(3159, 160, F3, 138) (dual of [160, 1, 139]-code) | [i] | ||
22 | Linear OA(3159, 160, F3, 137) (dual of [160, 1, 138]-code) | [i] | ||
23 | Linear OA(3159, 160, F3, 136) (dual of [160, 1, 137]-code) | [i] | ||
24 | Linear OA(3159, 160, F3, 135) (dual of [160, 1, 136]-code) | [i] | ||
25 | Linear OA(3159, 160, F3, 134) (dual of [160, 1, 135]-code) | [i] | ||
26 | Linear OA(3159, 160, F3, 133) (dual of [160, 1, 134]-code) | [i] | ||
27 | Linear OA(3159, 160, F3, 132) (dual of [160, 1, 133]-code) | [i] | ||
28 | Linear OA(3159, 160, F3, 131) (dual of [160, 1, 132]-code) | [i] | ||
29 | Linear OA(3159, 160, F3, 130) (dual of [160, 1, 131]-code) | [i] | ||
30 | Linear OA(3159, 160, F3, 129) (dual of [160, 1, 130]-code) | [i] | ||
31 | Linear OA(3159, 160, F3, 128) (dual of [160, 1, 129]-code) | [i] | ||
32 | Linear OA(3159, 160, F3, 127) (dual of [160, 1, 128]-code) | [i] | ||
33 | Linear OA(3159, 160, F3, 126) (dual of [160, 1, 127]-code) | [i] | ||
34 | Linear OA(3159, 160, F3, 125) (dual of [160, 1, 126]-code) | [i] | ||
35 | Linear OA(3159, 160, F3, 124) (dual of [160, 1, 125]-code) | [i] | ||
36 | Linear OA(3159, 160, F3, 123) (dual of [160, 1, 124]-code) | [i] | ||
37 | Linear OA(3159, 160, F3, 122) (dual of [160, 1, 123]-code) | [i] | ||
38 | Linear OA(3159, 160, F3, 121) (dual of [160, 1, 122]-code) | [i] | ||
39 | Linear OA(3159, 160, F3, 120) (dual of [160, 1, 121]-code) | [i] | ||
40 | Linear OA(379, 80, F3, 79) (dual of [80, 1, 80]-code or 80-arc in PG(78,3)) | [i] | ✔ | Contraction (with Narrow-Sense BCH-Code) |