Information on Result #677628

Linear OA(387, 96, F3, 53) (dual of [96, 9, 54]-code), using construction XX applied to C1 = C([0,87]), C2 = C([1,105]), C3 = C1 + C2 = C([1,87]), and C∩ = C1 ∩ C2 = C([0,105]) based on
  1. linear OA(370, 80, F3, 44) (dual of [80, 10, 45]-code), using contraction [i] based on linear OA(3150, 160, F3, 89) (dual of [160, 10, 90]-code), using the expurgated narrow-sense BCH-code C(I) with length 160 | 38−1, defining interval I = [0,87], and minimum distance d ≥ |{−1,0,…,87}|+1 = 90 (BCH-bound) [i]
  2. linear OA(375, 80, F3, 52) (dual of [80, 5, 53]-code), using contraction [i] based on linear OA(3155, 160, F3, 105) (dual of [160, 5, 106]-code), using the narrow-sense BCH-code C(I) with length 160 | 38−1, defining interval I = [1,105], and designed minimum distance d ≥ |I|+1 = 106 [i]
  3. linear OA(376, 80, F3, 53) (dual of [80, 4, 54]-code), using contraction [i] based on linear OA(3156, 160, F3, 107) (dual of [160, 4, 108]-code), using the expurgated narrow-sense BCH-code C(I) with length 160 | 38−1, defining interval I = [0,105], and minimum distance d ≥ |{−5,8,21,…,−67}|+1 = 108 (BCH-bound) [i]
  4. linear OA(369, 80, F3, 43) (dual of [80, 11, 44]-code), using contraction [i] based on linear OA(3149, 160, F3, 87) (dual of [160, 11, 88]-code), using the narrow-sense BCH-code C(I) with length 160 | 38−1, defining interval I = [1,87], and designed minimum distance d ≥ |I|+1 = 88 [i]
  5. linear OA(30, 1, F3, 0) (dual of [1, 1, 1]-code), using
  6. linear OA(311, 15, F3, 8) (dual of [15, 4, 9]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

None.