Information on Result #681869

Linear OA(417, 255, F4, 6) (dual of [255, 238, 7]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 255 = 44−1, defining interval I = [0,5], and designed minimum distance d ≥ |I|+1 = 7

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(417, 187, F4, 2, 6) (dual of [(187, 2), 357, 7]-NRT-code) [i]Embedding of OOA with Gilbert–VarÅ¡amov Bound
2Linear OOA(417, 187, F4, 3, 6) (dual of [(187, 3), 544, 7]-NRT-code) [i]
3Digital (11, 17, 187)-net over F4 [i]
4Linear OA(419, 264, F4, 6) (dual of [264, 245, 7]-code) [i]Construction XX with Cyclic Codes
5Linear OA(421, 263, F4, 7) (dual of [263, 242, 8]-code) [i]
6Linear OA(426, 268, F4, 8) (dual of [268, 242, 9]-code) [i]
7Linear OA(433, 275, F4, 10) (dual of [275, 242, 11]-code) [i]
8Linear OA(439, 280, F4, 11) (dual of [280, 241, 12]-code) [i]
9Linear OA(425, 263, F4, 8) (dual of [263, 238, 9]-code) [i]
10Linear OA(437, 275, F4, 11) (dual of [275, 238, 12]-code) [i]
11Linear OA(443, 280, F4, 12) (dual of [280, 237, 13]-code) [i]
12Linear OA(444, 282, F4, 13) (dual of [282, 238, 14]-code) [i]
13Linear OA(449, 287, F4, 14) (dual of [287, 238, 15]-code) [i]
14Linear OA(418, 262, F4, 6) (dual of [262, 244, 7]-code) [i]Construction X4 with Cyclic Codes