Information on Result #683981

Linear OA(596, 160, F5, 42) (dual of [160, 64, 43]-code), using construction XX applied to C1 = C([0,38]), C2 = C([1,40]), C3 = C1 + C2 = C([1,38]), and C∩ = C1 ∩ C2 = C([0,40]) based on
  1. linear OA(593, 156, F5, 40) (dual of [156, 63, 41]-code), using the expurgated narrow-sense BCH-code C(I) with length 156 | 54−1, defining interval I = [0,38], and minimum distance d ≥ |{−1,0,…,38}|+1 = 41 (BCH-bound) [i]
  2. linear OA(593, 156, F5, 40) (dual of [156, 63, 41]-code), using the narrow-sense BCH-code C(I) with length 156 | 54−1, defining interval I = [1,40], and designed minimum distance d ≥ |I|+1 = 41 [i]
  3. linear OA(594, 156, F5, 42) (dual of [156, 62, 43]-code), using the expurgated narrow-sense BCH-code C(I) with length 156 | 54−1, defining interval I = [0,40], and minimum distance d ≥ |{−1,0,…,40}|+1 = 43 (BCH-bound) [i]
  4. linear OA(592, 156, F5, 38) (dual of [156, 64, 39]-code), using the narrow-sense BCH-code C(I) with length 156 | 54−1, defining interval I = [1,38], and designed minimum distance d ≥ |I|+1 = 39 [i]
  5. linear OA(51, 2, F5, 1) (dual of [2, 1, 2]-code), using
  6. linear OA(51, 2, F5, 1) (dual of [2, 1, 2]-code) (see above)

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(596, 160, F5, 41) (dual of [160, 64, 42]-code) [i]Strength Reduction
2Linear OA(596, 160, F5, 40) (dual of [160, 64, 41]-code) [i]
3Linear OA(593, 157, F5, 39) (dual of [157, 64, 40]-code) [i]Truncation