Information on Result #684423

Linear OA(512, 30, F5, 7) (dual of [30, 18, 8]-code), using construction X applied to Ce(6) ⊂ Ce(3) based on
  1. linear OA(510, 25, F5, 7) (dual of [25, 15, 8]-code), using an extension Ce(6) of the primitive narrow-sense BCH-code C(I) with length 24 = 52−1, defining interval I = [1,6], and designed minimum distance d ≥ |I|+1 = 7 [i]
  2. linear OA(57, 25, F5, 4) (dual of [25, 18, 5]-code), using an extension Ce(3) of the primitive narrow-sense BCH-code C(I) with length 24 = 52−1, defining interval I = [1,3], and designed minimum distance d ≥ |I|+1 = 4 [i]
  3. linear OA(52, 5, F5, 2) (dual of [5, 3, 3]-code or 5-arc in PG(1,5)), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(5101, 154, F5, 45) (dual of [154, 53, 46]-code) [i]Construction X with Cyclic Codes
2Linear OA(592, 155, F5, 40) (dual of [155, 63, 41]-code) [i]Construction XX with Cyclic Codes
3Linear OA(5107, 169, F5, 45) (dual of [169, 62, 46]-code) [i]
4Linear OA(589, 670, F5, 23) (dual of [670, 581, 24]-code) [i]
5Linear OA(586, 663, F5, 23) (dual of [663, 577, 24]-code) [i]
6Linear OA(593, 670, F5, 24) (dual of [670, 577, 25]-code) [i]
7Linear OA(592, 669, F5, 24) (dual of [669, 577, 25]-code) [i]
8Linear OA(590, 663, F5, 24) (dual of [663, 573, 25]-code) [i]
9Linear OA(594, 663, F5, 25) (dual of [663, 569, 26]-code) [i]
10Linear OA(597, 670, F5, 26) (dual of [670, 573, 27]-code) [i]
11Linear OA(596, 665, F5, 26) (dual of [665, 569, 27]-code) [i]
12Linear OA(5104, 663, F5, 29) (dual of [663, 559, 30]-code) [i]
13Linear OA(5110, 669, F5, 30) (dual of [669, 559, 31]-code) [i]
14Linear OA(5112, 660, F5, 32) (dual of [660, 548, 33]-code) [i]
15Linear OA(5111, 658, F5, 32) (dual of [658, 547, 33]-code) [i]
16Linear OA(5118, 677, F5, 32) (dual of [677, 559, 33]-code) [i]
17Linear OA(5115, 670, F5, 32) (dual of [670, 555, 33]-code) [i]
18Linear OA(5116, 663, F5, 33) (dual of [663, 547, 34]-code) [i]
19Linear OA(5122, 677, F5, 33) (dual of [677, 555, 34]-code) [i]
20Linear OA(5125, 674, F5, 34) (dual of [674, 549, 35]-code) [i]
21Linear OA(5123, 668, F5, 34) (dual of [668, 545, 35]-code) [i]
22Linear OA(5120, 663, F5, 34) (dual of [663, 543, 35]-code) [i]
23Linear OA(5123, 671, F5, 34) (dual of [671, 548, 35]-code) [i]
24Linear OA(5126, 669, F5, 35) (dual of [669, 543, 36]-code) [i]
25Linear OA(5132, 680, F5, 36) (dual of [680, 548, 37]-code) [i]
26Linear OA(5130, 677, F5, 36) (dual of [677, 547, 37]-code) [i]
27Linear OA(5127, 674, F5, 35) (dual of [674, 547, 36]-code) [i]
28Linear OA(5127, 670, F5, 36) (dual of [670, 543, 37]-code) [i]
29Linear OA(5136, 681, F5, 37) (dual of [681, 545, 38]-code) [i]
30Linear OA(5134, 677, F5, 37) (dual of [677, 543, 38]-code) [i]
31Linear OA(5131, 670, F5, 37) (dual of [670, 539, 38]-code) [i]
32Linear OA(5135, 670, F5, 38) (dual of [670, 535, 39]-code) [i]
33Linear OA(5134, 665, F5, 38) (dual of [665, 531, 39]-code) [i]
34Linear OA(5132, 663, F5, 38) (dual of [663, 531, 39]-code) [i]
35Linear OA(5141, 684, F5, 38) (dual of [684, 543, 39]-code) [i]
36Linear OA(5139, 670, F5, 39) (dual of [670, 531, 40]-code) [i]
37Linear OA(5136, 663, F5, 39) (dual of [663, 527, 40]-code) [i]
38Linear OA(5139, 671, F5, 39) (dual of [671, 532, 40]-code) [i]
39Linear OA(5140, 663, F5, 40) (dual of [663, 523, 41]-code) [i]
40Linear OA(5149, 682, F5, 41) (dual of [682, 533, 42]-code) [i]
41Linear OA(5143, 670, F5, 41) (dual of [670, 527, 42]-code) [i]
42Linear OA(5142, 665, F5, 41) (dual of [665, 523, 42]-code) [i]
43Linear OA(5150, 677, F5, 42) (dual of [677, 527, 43]-code) [i]
44Linear OA(5147, 670, F5, 42) (dual of [670, 523, 43]-code) [i]
45Linear OA(5150, 665, F5, 43) (dual of [665, 515, 44]-code) [i]
46Linear OA(5148, 663, F5, 43) (dual of [663, 515, 44]-code) [i]