Information on Result #690874

Linear OA(969, 91, F9, 47) (dual of [91, 22, 48]-code), using construction XX applied to C1 = C([0,83]), C2 = C([1,99]), C3 = C1 + C2 = C([1,83]), and C∩ = C1 ∩ C2 = C([0,99]) based on
  1. linear OA(959, 80, F9, 42) (dual of [80, 21, 43]-code), using contraction [i] based on linear OA(9139, 160, F9, 85) (dual of [160, 21, 86]-code), using the expurgated narrow-sense BCH-code C(I) with length 160 | 94−1, defining interval I = [0,83], and minimum distance d ≥ |{−1,0,…,83}|+1 = 86 (BCH-bound) [i]
  2. linear OA(964, 80, F9, 49) (dual of [80, 16, 50]-code), using contraction [i] based on linear OA(9144, 160, F9, 99) (dual of [160, 16, 100]-code), using the narrow-sense BCH-code C(I) with length 160 | 94−1, defining interval I = [1,99], and designed minimum distance d ≥ |I|+1 = 100 [i]
  3. linear OA(965, 80, F9, 50) (dual of [80, 15, 51]-code), using contraction [i] based on linear OA(9145, 160, F9, 101) (dual of [160, 15, 102]-code), using the expurgated narrow-sense BCH-code C(I) with length 160 | 94−1, defining interval I = [0,99], and minimum distance d ≥ |{−1,0,…,99}|+1 = 102 (BCH-bound) [i]
  4. linear OA(958, 80, F9, 41) (dual of [80, 22, 42]-code), using contraction [i] based on linear OA(9138, 160, F9, 83) (dual of [160, 22, 84]-code), using the narrow-sense BCH-code C(I) with length 160 | 94−1, defining interval I = [1,83], and designed minimum distance d ≥ |I|+1 = 84 [i]
  5. linear OA(90, 1, F9, 0) (dual of [1, 1, 1]-code), using
  6. linear OA(94, 10, F9, 4) (dual of [10, 6, 5]-code or 10-arc in PG(3,9)), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

None.