Information on Result #695092

Linear OA(2740, 19686, F27, 14) (dual of [19686, 19646, 15]-code), using construction X applied to Ce(13) ⊂ Ce(12) based on
  1. linear OA(2740, 19683, F27, 14) (dual of [19683, 19643, 15]-code), using an extension Ce(13) of the primitive narrow-sense BCH-code C(I) with length 19682 = 273−1, defining interval I = [1,13], and designed minimum distance d ≥ |I|+1 = 14 [i]
  2. linear OA(2737, 19683, F27, 13) (dual of [19683, 19646, 14]-code), using an extension Ce(12) of the primitive narrow-sense BCH-code C(I) with length 19682 = 273−1, defining interval I = [1,12], and designed minimum distance d ≥ |I|+1 = 13 [i]
  3. linear OA(270, 3, F27, 0) (dual of [3, 3, 1]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1OA(960, 19686, S9, 14) [i]Discarding Parts of the Base for OAs
2Linear OA(2747, 19714, F27, 14) (dual of [19714, 19667, 15]-code) [i](u, u+v)-Construction
3Linear OA(2748, 19724, F27, 14) (dual of [19724, 19676, 15]-code) [i]
4Linear OA(2749, 19734, F27, 14) (dual of [19734, 19685, 15]-code) [i]
5Linear OA(2750, 19742, F27, 14) (dual of [19742, 19692, 15]-code) [i]
6Linear OA(2751, 19752, F27, 14) (dual of [19752, 19701, 15]-code) [i]
7Linear OA(2752, 19794, F27, 14) (dual of [19794, 19742, 15]-code) [i]
8OA(2750, 19768, S27, 14) [i]
9OA(2751, 19786, S27, 14) [i]
10OA(2752, 19802, S27, 14) [i]
11Linear OOA(2740, 9843, F27, 2, 14) (dual of [(9843, 2), 19646, 15]-NRT-code) [i]OOA Folding
12Linear OOA(2740, 2812, F27, 14, 14) (dual of [(2812, 14), 39328, 15]-NRT-code) [i]OA Folding and Stacking