Information on Result #700498

Linear OA(252, 63, F2, 25) (dual of [63, 11, 26]-code), using the primitive cyclic code C(A) with length 63 = 26−1, defining set A = {0,1,3,5,7,11,13,15,23,27}, and minimum distance d ≥ |{−31,−20,−9,…,−19}|+1 = 26 (BCH-bound)

Mode: Constructive and linear.

This result is hidden, because other results with identical parameters exist.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(252, 63, F2, 24) (dual of [63, 11, 25]-code) [i]Strength Reduction
2Linear OA(251, 62, F2, 24) (dual of [62, 11, 25]-code) [i]Truncation
3Linear OA(264, 84, F2, 25) (dual of [84, 20, 26]-code) [i]Construction X with Cyclic Codes
4Linear OA(255, 66, F2, 27) (dual of [66, 11, 28]-code) [i]
5Linear OA(273, 84, F2, 33) (dual of [84, 11, 34]-code) [i]
6Linear OA(272, 83, F2, 33) (dual of [83, 11, 34]-code) [i]
7Linear OA(261, 72, F2, 29) (dual of [72, 11, 30]-code) [i]Construction XX with a Chain of Cyclic Codes
8Linear OA(275, 86, F2, 35) (dual of [86, 11, 36]-code) [i]
9Linear OOA(252, 31, F2, 2, 25) (dual of [(31, 2), 10, 26]-NRT-code) [i]OOA Folding
10Linear OOA(252, 21, F2, 3, 25) (dual of [(21, 3), 11, 26]-NRT-code) [i]