Information on Result #700540

Linear OA(248, 63, F2, 23) (dual of [63, 15, 24]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 63 = 26−1, defining interval I = [0,21], and designed minimum distance d ≥ |I|+1 = 24

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(2172, 186, F2, 71) (dual of [186, 14, 72]-code) [i]Repeating Each Code Word
2Linear OA(2170, 183, F2, 71) (dual of [183, 13, 72]-code) [i]
3Linear OA(2168, 180, F2, 71) (dual of [180, 12, 72]-code) [i]
4Linear OA(2166, 177, F2, 71) (dual of [177, 11, 72]-code) [i]
5Linear OA(2164, 174, F2, 71) (dual of [174, 10, 72]-code) [i]
6Linear OA(2162, 171, F2, 71) (dual of [171, 9, 72]-code) [i]
7Linear OA(267, 90, F2, 25) (dual of [90, 23, 26]-code) [i]Construction XX with Cyclic Codes
8Linear OA(260, 77, F2, 27) (dual of [77, 17, 28]-code) [i]
9Linear OA(256, 73, F2, 25) (dual of [73, 17, 26]-code) [i]
10Linear OA(2161, 189, F2, 55) (dual of [189, 28, 56]-code) [i]Construction X with De Boer–Brouwer Codes
11Linear OA(2160, 189, F2, 54) (dual of [189, 29, 55]-code) [i]
12Linear OOA(248, 21, F2, 3, 23) (dual of [(21, 3), 15, 24]-NRT-code) [i]OOA Folding
13Linear OOA(248, 12, F2, 5, 23) (dual of [(12, 5), 12, 24]-NRT-code) [i]