Information on Result #700554

Linear OA(2119, 127, F2, 62) (dual of [127, 8, 63]-code), using the primitive narrow-sense BCH-code C(I) with length 127 = 27−1, defining interval I = [1,55], and designed minimum distance d ≥ |I|+1 = 63

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(2119, 127, F2, 61) (dual of [127, 8, 62]-code) [i]Strength Reduction
2Linear OA(2119, 127, F2, 60) (dual of [127, 8, 61]-code) [i]
3Linear OA(2121, 129, F2, 62) (dual of [129, 8, 63]-code) [i]Code Embedding in Larger Space
4Linear OA(2122, 130, F2, 62) (dual of [130, 8, 63]-code) [i]
5Linear OA(2123, 131, F2, 62) (dual of [131, 8, 63]-code) [i]
6Linear OA(2124, 132, F2, 62) (dual of [132, 8, 63]-code) [i]
7Linear OA(2194, 202, F2, 98) (dual of [202, 8, 99]-code) [i]Construction X with Cyclic Codes
8Linear OA(2190, 198, F2, 96) (dual of [198, 8, 97]-code) [i]
9Linear OA(2150, 165, F2, 70) (dual of [165, 15, 71]-code) [i]Construction XX with Cyclic Codes
10Linear OA(2147, 162, F2, 68) (dual of [162, 15, 69]-code) [i]
11Linear OA(2143, 158, F2, 66) (dual of [158, 15, 67]-code) [i]
12Linear OA(2139, 154, F2, 64) (dual of [154, 15, 65]-code) [i]
13Linear OA(2149, 162, F2, 70) (dual of [162, 13, 71]-code) [i]
14Linear OA(2146, 159, F2, 68) (dual of [159, 13, 69]-code) [i]
15Linear OA(2142, 155, F2, 66) (dual of [155, 13, 67]-code) [i]
16Linear OA(2138, 151, F2, 64) (dual of [151, 13, 65]-code) [i]
17Linear OA(2134, 143, F2, 64) (dual of [143, 9, 65]-code) [i]
18Linear OOA(2119, 63, F2, 2, 62) (dual of [(63, 2), 7, 63]-NRT-code) [i]OOA Folding
19Linear OOA(2119, 42, F2, 3, 62) (dual of [(42, 3), 7, 63]-NRT-code) [i]
20Linear OOA(2119, 25, F2, 5, 62) (dual of [(25, 5), 6, 63]-NRT-code) [i]