Information on Result #700581

Linear OA(250, 127, F2, 15) (dual of [127, 77, 16]-code), using the primitive cyclic code C(A) with length 127 = 27−1, defining set A = {0,1,3,5,7,9,11,63}, and minimum distance d ≥ |{−2,−1,…,12}|+1 = 16 (BCH-bound)

Mode: Constructive and linear.

This result is hidden, because other results with identical parameters exist.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(255, 147, F2, 15) (dual of [147, 92, 16]-code) [i]Construction XX with Cyclic Codes
2Linear OA(252, 144, F2, 14) (dual of [144, 92, 15]-code) [i]
3Linear OA(252, 143, F2, 15) (dual of [143, 91, 16]-code) [i]
4Linear OA(262, 147, F2, 17) (dual of [147, 85, 18]-code) [i]
5Linear OA(259, 144, F2, 16) (dual of [144, 85, 17]-code) [i]
6Linear OA(259, 143, F2, 17) (dual of [143, 84, 18]-code) [i]
7Linear OA(275, 158, F2, 20) (dual of [158, 83, 21]-code) [i]
8Linear OA(274, 154, F2, 20) (dual of [154, 80, 21]-code) [i]
9Linear OA(276, 160, F2, 21) (dual of [160, 84, 22]-code) [i]
10Linear OA(275, 157, F2, 21) (dual of [157, 82, 22]-code) [i]
11Linear OA(274, 153, F2, 21) (dual of [153, 79, 22]-code) [i]
12Linear OOA(250, 42, F2, 3, 15) (dual of [(42, 3), 76, 16]-NRT-code) [i]OOA Folding