Information on Result #700661

Linear OA(2144, 164, F2, 60) (dual of [164, 20, 61]-code), using construction XX applied to C1 = C({0,1,3,5,7,9,11,13,15,19,21,23,27,29,31,43,63}), C2 = C([1,47]), C3 = C1 + C2 = C([1,43]), and C∩ = C1 ∩ C2 = C({0,1,3,5,7,9,11,13,15,19,21,23,27,29,31,43,47,63}) based on
  1. linear OA(2113, 127, F2, 51) (dual of [127, 14, 52]-code), using the primitive cyclic code C(A) with length 127 = 27−1, defining set A = {0,1,3,5,7,9,11,13,15,19,21,23,27,29,31,43,63}, and minimum distance d ≥ |{−4,−3,…,46}|+1 = 52 (BCH-bound) [i]
  2. linear OA(2112, 127, F2, 54) (dual of [127, 15, 55]-code), using the primitive narrow-sense BCH-code C(I) with length 127 = 27−1, defining interval I = [1,47], and designed minimum distance d ≥ |I|+1 = 55 [i]
  3. linear OA(2120, 127, F2, 63) (dual of [127, 7, 64]-code), using the primitive cyclic code C(A) with length 127 = 27−1, defining set A = {0,1,3,5,7,9,11,13,15,19,21,23,27,29,31,43,47,63}, and minimum distance d ≥ |{0,9,18,…,50}|+1 = 64 (BCH-bound) [i]
  4. linear OA(2105, 127, F2, 46) (dual of [127, 22, 47]-code), using the primitive narrow-sense BCH-code C(I) with length 127 = 27−1, defining interval I = [1,43], and designed minimum distance d ≥ |I|+1 = 47 [i]
  5. linear OA(29, 17, F2, 5) (dual of [17, 8, 6]-code), using
  6. linear OA(215, 20, F2, 8) (dual of [20, 5, 9]-code), using
    • 1 times truncation [i] based on linear OA(216, 21, F2, 9) (dual of [21, 5, 10]-code), using
      • a code of Belov type defined by PG(4,2) ∖ (PG(2,2) ∪ PG(1,2)) [i]
      • the expurgated narrow-sense BCH-code C(I) with length 21 | 26−1, defining interval I = [0,6], and minimum distance d ≥ |{−2,−1,…,6}|+1 = 10 (BCH-bound) [i]

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(2144, 82, F2, 2, 60) (dual of [(82, 2), 20, 61]-NRT-code) [i]OOA Folding