Information on Result #700721

Linear OA(325, 88, F3, 9) (dual of [88, 63, 10]-code), using construction XX applied to C1 = C({0,1,2,4,5,53}), C2 = C([0,7]), C3 = C1 + C2 = C([0,5]), and C∩ = C1 ∩ C2 = C({0,1,2,4,5,7,53}) based on
  1. linear OA(321, 80, F3, 8) (dual of [80, 59, 9]-code), using the primitive cyclic code C(A) with length 80 = 34−1, defining set A = {0,1,2,4,5,53}, and minimum distance d ≥ |{−1,0,…,6}|+1 = 9 (BCH-bound) [i]
  2. linear OA(321, 80, F3, 8) (dual of [80, 59, 9]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 80 = 34−1, defining interval I = [0,7], and designed minimum distance d ≥ |I|+1 = 9 [i]
  3. linear OA(325, 80, F3, 9) (dual of [80, 55, 10]-code), using the primitive cyclic code C(A) with length 80 = 34−1, defining set A = {0,1,2,4,5,7,53}, and minimum distance d ≥ |{−1,0,…,7}|+1 = 10 (BCH-bound) [i]
  4. linear OA(317, 80, F3, 7) (dual of [80, 63, 8]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 80 = 34−1, defining interval I = [0,5], and designed minimum distance d ≥ |I|+1 = 8 [i]
  5. linear OA(30, 4, F3, 0) (dual of [4, 4, 1]-code), using
  6. linear OA(30, 4, F3, 0) (dual of [4, 4, 1]-code) (see above)

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(328, 98, F3, 9) (dual of [98, 70, 10]-code) [i]VarÅ¡amov–Edel Lengthening
2Linear OOA(325, 44, F3, 2, 9) (dual of [(44, 2), 63, 10]-NRT-code) [i]OOA Folding
3Linear OOA(325, 29, F3, 3, 9) (dual of [(29, 3), 62, 10]-NRT-code) [i]