Information on Result #700799

Linear OA(369, 80, F3, 43) (dual of [80, 11, 44]-code), using the primitive cyclic code C(A) with length 80 = 34−1, defining set A = {0,1,2,4,5,7,8,10,11,13,14,16,17,20,22,23,25,26,53}, and minimum distance d ≥ |{−3,−2,…,39}|+1 = 44 (BCH-bound)

Mode: Constructive and linear.

This result is hidden, because other results with identical parameters exist.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(369, 80, F3, 42) (dual of [80, 11, 43]-code) [i]Strength Reduction
2Linear OA(3147, 156, F3, 87) (dual of [156, 9, 88]-code) [i]Repeating Each Code Word
3Linear OA(3146, 154, F3, 87) (dual of [154, 8, 88]-code) [i]
4Linear OA(3190, 200, F3, 115) (dual of [200, 10, 116]-code) [i]Juxtaposition
5Linear OA(382, 98, F3, 47) (dual of [98, 16, 48]-code) [i]Construction XX with Cyclic Codes
6Linear OA(379, 95, F3, 45) (dual of [95, 16, 46]-code) [i]
7Linear OOA(369, 40, F3, 2, 43) (dual of [(40, 2), 11, 44]-NRT-code) [i]OOA Folding
8Linear OOA(369, 26, F3, 3, 43) (dual of [(26, 3), 9, 44]-NRT-code) [i]