Information on Result #700805

Linear OA(370, 80, F3, 44) (dual of [80, 10, 45]-code), using the primitive cyclic code C(A) with length 80 = 34−1, defining set A = {0,1,2,4,5,7,8,10,11,13,14,16,17,20,22,23,25,26,40,53}, and minimum distance d ≥ |{−3,−2,…,40}|+1 = 45 (BCH-bound)

Mode: Constructive and linear.

This result is hidden, because other results with identical parameters exist.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(3149, 158, F3, 89) (dual of [158, 9, 90]-code) [i]Repeating Each Code Word
2Linear OA(3148, 156, F3, 89) (dual of [156, 8, 90]-code) [i]
3Linear OA(3191, 201, F3, 116) (dual of [201, 10, 117]-code) [i]Juxtaposition
4Linear OA(381, 96, F3, 47) (dual of [96, 15, 48]-code) [i]Construction XX with Cyclic Codes
5Linear OA(379, 94, F3, 46) (dual of [94, 15, 47]-code) [i]
6Linear OA(380, 94, F3, 47) (dual of [94, 14, 48]-code) [i]
7Linear OA(378, 92, F3, 46) (dual of [92, 14, 47]-code) [i]
8Linear OA(376, 90, F3, 45) (dual of [90, 14, 46]-code) [i]
9Linear OA(379, 91, F3, 47) (dual of [91, 12, 48]-code) [i]
10Linear OA(377, 89, F3, 46) (dual of [89, 12, 47]-code) [i]
11Linear OOA(370, 40, F3, 2, 44) (dual of [(40, 2), 10, 45]-NRT-code) [i]OOA Folding