Information on Result #700809

Linear OA(373, 80, F3, 49) (dual of [80, 7, 50]-code), using the primitive cyclic code C(A) with length 80 = 34−1, defining set A = {0,1,2,4,5,7,8,10,11,13,14,16,17,20,22,23,25,26,44,53}, and minimum distance d ≥ |{−9,−8,…,39}|+1 = 50 (BCH-bound)

Mode: Constructive and linear.

This result is hidden, because other results with identical parameters exist.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(373, 80, F3, 48) (dual of [80, 7, 49]-code) [i]Strength Reduction
2Linear OA(3191, 198, F3, 121) (dual of [198, 7, 122]-code) [i]Juxtaposition
3Linear OA(3241, 248, F3, 157) (dual of [248, 7, 158]-code) [i]
4Linear OA(3173, 180, F3, 112) (dual of [180, 7, 113]-code) [i]
5Linear OA(3177, 184, F3, 115) (dual of [184, 7, 116]-code) [i]
6Linear OA(3181, 188, F3, 118) (dual of [188, 7, 119]-code) [i]
7Linear OA(3185, 192, F3, 121) (dual of [192, 7, 122]-code) [i]
8Linear OA(394, 110, F3, 52) (dual of [110, 16, 53]-code) [i]Construction XX with Cyclic Codes
9Linear OA(394, 109, F3, 53) (dual of [109, 15, 54]-code) [i]
10Linear OOA(373, 40, F3, 2, 49) (dual of [(40, 2), 7, 50]-NRT-code) [i]OOA Folding
11Linear OOA(373, 26, F3, 3, 49) (dual of [(26, 3), 5, 50]-NRT-code) [i]