Information on Result #700833

Linear OA(392, 101, F3, 55) (dual of [101, 9, 56]-code), using construction XX applied to C1 = C({0,1,2,4,5,7,8,10,11,13,14,16,17,20,22,23,25,26,40,41,53}), C2 = C([0,44]), C3 = C1 + C2 = C([0,41]), and C∩ = C1 ∩ C2 = C({0,1,2,4,5,7,8,10,11,13,14,16,17,20,22,23,25,26,40,41,44,53}) based on
  1. linear OA(374, 80, F3, 47) (dual of [80, 6, 48]-code), using the primitive cyclic code C(A) with length 80 = 34−1, defining set A = {0,1,2,4,5,7,8,10,11,13,14,16,17,20,22,23,25,26,40,41,53}, and minimum distance d ≥ |{1,14,27,…,39}|+1 = 48 (BCH-bound) [i]
  2. linear OA(374, 80, F3, 50) (dual of [80, 6, 51]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 80 = 34−1, defining interval I = [0,44], and designed minimum distance d ≥ |I|+1 = 51 [i]
  3. linear OA(378, 80, F3, 59) (dual of [80, 2, 60]-code), using the primitive cyclic code C(A) with length 80 = 34−1, defining set A = {0,1,2,4,5,7,8,10,11,13,14,16,17,20,22,23,25,26,40,41,44,53}, and minimum distance d ≥ |{3,16,29,…,37}|+1 = 60 (BCH-bound) [i]
  4. linear OA(370, 80, F3, 44) (dual of [80, 10, 45]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 80 = 34−1, defining interval I = [0,41], and designed minimum distance d ≥ |I|+1 = 45 [i]
  5. linear OA(35, 9, F3, 4) (dual of [9, 4, 5]-code), using
  6. linear OA(39, 12, F3, 7) (dual of [12, 3, 8]-code), using
    • 1 times truncation [i] based on linear OA(310, 13, F3, 8) (dual of [13, 3, 9]-code), using
      • Simplex code S(3,3) [i]
      • the expurgated narrow-sense BCH-code C(I) with length 13 | 33−1, defining interval I = [0,6], and minimum distance d ≥ |{−1,0,…,6}|+1 = 9 (BCH-bound) [i]

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

None.