Information on Result #700857

Linear OA(335, 126, F3, 11) (dual of [126, 91, 12]-code), using construction X applied to C({2,4,7,11,13,17,25}) ⊂ C({2,4,7,11,17,25}) based on
  1. linear OA(335, 121, F3, 11) (dual of [121, 86, 12]-code), using the cyclic code C(A) with length 121 | 35−1, defining set A = {2,4,7,11,13,17,25}, and minimum distance d ≥ |{13,32,51,…,−39}|+1 = 12 (BCH-bound) [i]
  2. linear OA(330, 121, F3, 10) (dual of [121, 91, 11]-code), using the cyclic code C(A) with length 121 | 35−1, defining set A = {2,4,7,11,17,25}, and minimum distance d ≥ |{32,51,70,…,−39}|+1 = 11 (BCH-bound) [i]
  3. linear OA(30, 5, F3, 0) (dual of [5, 5, 1]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(335, 125, F3, 2, 11) (dual of [(125, 2), 215, 12]-NRT-code) [i]Embedding of OOA with Gilbert–VarÅ¡amov Bound
2Linear OOA(335, 125, F3, 3, 11) (dual of [(125, 3), 340, 12]-NRT-code) [i]
3Linear OOA(335, 125, F3, 4, 11) (dual of [(125, 4), 465, 12]-NRT-code) [i]
4Linear OOA(335, 125, F3, 5, 11) (dual of [(125, 5), 590, 12]-NRT-code) [i]
5Digital (24, 35, 125)-net over F3 [i]
6Linear OOA(335, 63, F3, 2, 11) (dual of [(63, 2), 91, 12]-NRT-code) [i]OOA Folding