Information on Result #700881

Linear OA(360, 126, F3, 21) (dual of [126, 66, 22]-code), using construction X applied to C({1,4,7,8,10,13,16,19,20,22,25,26}) ⊂ C({1,4,7,8,10,13,16,19,22,25,26}) based on
  1. linear OA(360, 121, F3, 21) (dual of [121, 61, 22]-code), using the cyclic code C(A) with length 121 | 35−1, defining set A = {1,4,7,8,10,13,16,19,20,22,25,26}, and minimum distance d ≥ |{10,30,50,…,47}|+1 = 22 (BCH-bound) [i]
  2. linear OA(355, 121, F3, 20) (dual of [121, 66, 21]-code), using the cyclic code C(A) with length 121 | 35−1, defining set A = {1,4,7,8,10,13,16,19,22,25,26}, and minimum distance d ≥ |{10,30,50,…,27}|+1 = 21 (BCH-bound) [i]
  3. linear OA(30, 5, F3, 0) (dual of [5, 5, 1]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(361, 130, F3, 21) (dual of [130, 69, 22]-code) [i]VarÅ¡amov–Edel Lengthening
2Linear OA(362, 136, F3, 21) (dual of [136, 74, 22]-code) [i]
3Linear OOA(360, 63, F3, 2, 21) (dual of [(63, 2), 66, 22]-NRT-code) [i]OOA Folding
4Linear OOA(360, 42, F3, 3, 21) (dual of [(42, 3), 66, 22]-NRT-code) [i]