Information on Result #701019

Linear OA(437, 69, F4, 16) (dual of [69, 32, 17]-code), using construction XX applied to C1 = C({0,1,2,3,5,6,7,9,10,11,13,47}), C2 = C([0,14]), C3 = C1 + C2 = C([0,13]), and C∩ = C1 ∩ C2 = C({0,1,2,3,5,6,7,9,10,11,13,14,47}) based on
  1. linear OA(434, 63, F4, 15) (dual of [63, 29, 16]-code), using the primitive cyclic code C(A) with length 63 = 43−1, defining set A = {0,1,2,3,5,6,7,9,10,11,13,47}, and minimum distance d ≥ |{−1,0,…,13}|+1 = 16 (BCH-bound) [i]
  2. linear OA(434, 63, F4, 15) (dual of [63, 29, 16]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 63 = 43−1, defining interval I = [0,14], and designed minimum distance d ≥ |I|+1 = 16 [i]
  3. linear OA(437, 63, F4, 16) (dual of [63, 26, 17]-code), using the primitive cyclic code C(A) with length 63 = 43−1, defining set A = {0,1,2,3,5,6,7,9,10,11,13,14,47}, and minimum distance d ≥ |{−1,0,…,14}|+1 = 17 (BCH-bound) [i]
  4. linear OA(431, 63, F4, 14) (dual of [63, 32, 15]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 63 = 43−1, defining interval I = [0,13], and designed minimum distance d ≥ |I|+1 = 15 [i]
  5. linear OA(40, 3, F4, 0) (dual of [3, 3, 1]-code), using
  6. linear OA(40, 3, F4, 0) (dual of [3, 3, 1]-code) (see above)

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(437, 34, F4, 2, 16) (dual of [(34, 2), 31, 17]-NRT-code) [i]OOA Folding