Information on Result #701062
Linear OA(416, 63, F4, 7) (dual of [63, 47, 8]-code), using the primitive cyclic code C(A) with length 63 = 43−1, defining set A = {5,9,13,21,22,23}, and minimum distance d ≥ |{17,18,…,23}|+1 = 8 (BCH-bound)
Mode: Constructive and linear.
This result is hidden, because other results with identical parameters exist.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
- Primitive Cyclic Codes (BCH-Bound) (hidden) [i]
- Primitive Cyclic Codes (BCH-Bound) (hidden) [i]
- Primitive Expurgated Narrow-Sense BCH-Codes [i]
- Primitive Cyclic Codes (BCH-Bound) (hidden) [i]
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(416, 53, F4, 2, 7) (dual of [(53, 2), 90, 8]-NRT-code) | [i] | Embedding of OOA with Gilbert–Varšamov Bound | |
2 | Linear OOA(416, 53, F4, 3, 7) (dual of [(53, 3), 143, 8]-NRT-code) | [i] | ||
3 | Digital (9, 16, 53)-net over F4 | [i] | ||
4 | Linear OA(4255, 16443, F4, 45) (dual of [16443, 16188, 46]-code) | [i] | Construction X with Cyclic Codes | |
5 | Linear OA(4241, 16443, F4, 43) (dual of [16443, 16202, 44]-code) | [i] | ||
6 | Linear OA(4227, 16443, F4, 41) (dual of [16443, 16216, 42]-code) | [i] | ||
7 | Linear OA(4213, 16443, F4, 37) (dual of [16443, 16230, 38]-code) | [i] | ||
8 | Linear OA(4199, 16443, F4, 35) (dual of [16443, 16244, 36]-code) | [i] | ||
9 | Linear OA(4185, 16443, F4, 33) (dual of [16443, 16258, 34]-code) | [i] | ||
10 | Linear OA(4157, 16443, F4, 27) (dual of [16443, 16286, 28]-code) | [i] | ||
11 | Linear OA(4143, 16443, F4, 25) (dual of [16443, 16300, 26]-code) | [i] | ||
12 | Linear OA(4257, 4149, F4, 53) (dual of [4149, 3892, 54]-code) | [i] | ||
13 | Linear OA(4245, 4149, F4, 51) (dual of [4149, 3904, 52]-code) | [i] | ||
14 | Linear OA(4233, 4149, F4, 49) (dual of [4149, 3916, 50]-code) | [i] | ||
15 | Linear OA(4221, 4149, F4, 45) (dual of [4149, 3928, 46]-code) | [i] | ||
16 | Linear OA(4209, 4149, F4, 43) (dual of [4149, 3940, 44]-code) | [i] | ||
17 | Linear OA(4197, 4149, F4, 41) (dual of [4149, 3952, 42]-code) | [i] | ||
18 | Linear OA(4185, 4149, F4, 37) (dual of [4149, 3964, 38]-code) | [i] | ||
19 | Linear OA(4173, 4149, F4, 35) (dual of [4149, 3976, 36]-code) | [i] | ||
20 | Linear OA(4161, 4149, F4, 33) (dual of [4149, 3988, 34]-code) | [i] | ||
21 | Linear OA(4137, 4149, F4, 27) (dual of [4149, 4012, 28]-code) | [i] | ||
22 | Linear OA(4125, 4149, F4, 25) (dual of [4149, 4024, 26]-code) | [i] | ||
23 | Linear OA(4257, 1071, F4, 65) (dual of [1071, 814, 66]-code) | [i] | ||
24 | Linear OA(4247, 1071, F4, 61) (dual of [1071, 824, 62]-code) | [i] | ||
25 | Linear OA(4237, 1071, F4, 59) (dual of [1071, 834, 60]-code) | [i] | ||
26 | Linear OA(4227, 1071, F4, 57) (dual of [1071, 844, 58]-code) | [i] | ||
27 | Linear OA(4217, 1071, F4, 53) (dual of [1071, 854, 54]-code) | [i] | ||
28 | Linear OA(4207, 1071, F4, 51) (dual of [1071, 864, 52]-code) | [i] | ||
29 | Linear OA(4197, 1071, F4, 49) (dual of [1071, 874, 50]-code) | [i] | ||
30 | Linear OA(4187, 1071, F4, 45) (dual of [1071, 884, 46]-code) | [i] | ||
31 | Linear OA(4177, 1071, F4, 43) (dual of [1071, 894, 44]-code) | [i] | ||
32 | Linear OA(4167, 1071, F4, 41) (dual of [1071, 904, 42]-code) | [i] | ||
33 | Linear OA(4157, 1071, F4, 37) (dual of [1071, 914, 38]-code) | [i] | ||
34 | Linear OA(4147, 1071, F4, 35) (dual of [1071, 924, 36]-code) | [i] | ||
35 | Linear OA(4137, 1071, F4, 33) (dual of [1071, 934, 34]-code) | [i] | ||
36 | Linear OA(4117, 1071, F4, 27) (dual of [1071, 954, 28]-code) | [i] | ||
37 | Linear OA(4107, 1071, F4, 25) (dual of [1071, 964, 26]-code) | [i] | ||
38 | Linear OA(421, 71, F4, 9) (dual of [71, 50, 10]-code) | [i] | ✔ | Construction XX with Cyclic Codes |
39 | Linear OA(4255, 16442, F4, 46) (dual of [16442, 16187, 47]-code) | [i] | Construction X with Extended Narrow-Sense BCH Codes | |
40 | Linear OA(4248, 16442, F4, 45) (dual of [16442, 16194, 46]-code) | [i] | ||
41 | Linear OA(4234, 16442, F4, 42) (dual of [16442, 16208, 43]-code) | [i] | ||
42 | Linear OA(4220, 16442, F4, 39) (dual of [16442, 16222, 40]-code) | [i] | ||
43 | Linear OA(4213, 16442, F4, 38) (dual of [16442, 16229, 39]-code) | [i] | ||
44 | Linear OA(4206, 16442, F4, 37) (dual of [16442, 16236, 38]-code) | [i] | ||
45 | Linear OA(4192, 16442, F4, 34) (dual of [16442, 16250, 35]-code) | [i] | ||
46 | Linear OA(4178, 16442, F4, 31) (dual of [16442, 16264, 32]-code) | [i] | ||
47 | Linear OA(4171, 16442, F4, 30) (dual of [16442, 16271, 31]-code) | [i] | ||
48 | Linear OA(4164, 16442, F4, 29) (dual of [16442, 16278, 30]-code) | [i] | ||
49 | Linear OA(4150, 16442, F4, 26) (dual of [16442, 16292, 27]-code) | [i] | ||
50 | Linear OA(4136, 16442, F4, 23) (dual of [16442, 16306, 24]-code) | [i] | ||
51 | Linear OA(4257, 4148, F4, 54) (dual of [4148, 3891, 55]-code) | [i] | ||
52 | Linear OA(4251, 4148, F4, 53) (dual of [4148, 3897, 54]-code) | [i] | ||
53 | Linear OA(4239, 4148, F4, 50) (dual of [4148, 3909, 51]-code) | [i] | ||
54 | Linear OA(4227, 4148, F4, 47) (dual of [4148, 3921, 48]-code) | [i] | ||
55 | Linear OA(4221, 4148, F4, 46) (dual of [4148, 3927, 47]-code) | [i] | ||
56 | Linear OA(4215, 4148, F4, 45) (dual of [4148, 3933, 46]-code) | [i] | ||
57 | Linear OA(4203, 4148, F4, 42) (dual of [4148, 3945, 43]-code) | [i] | ||
58 | Linear OA(4191, 4148, F4, 39) (dual of [4148, 3957, 40]-code) | [i] | ||
59 | Linear OA(4185, 4148, F4, 38) (dual of [4148, 3963, 39]-code) | [i] | ||
60 | Linear OA(4179, 4148, F4, 37) (dual of [4148, 3969, 38]-code) | [i] | ||
61 | Linear OA(4167, 4148, F4, 34) (dual of [4148, 3981, 35]-code) | [i] | ||
62 | Linear OA(4155, 4148, F4, 31) (dual of [4148, 3993, 32]-code) | [i] | ||
63 | Linear OA(4149, 4148, F4, 30) (dual of [4148, 3999, 31]-code) | [i] | ||
64 | Linear OA(4143, 4148, F4, 29) (dual of [4148, 4005, 30]-code) | [i] | ||
65 | Linear OA(4131, 4148, F4, 26) (dual of [4148, 4017, 27]-code) | [i] | ||
66 | Linear OA(4252, 1070, F4, 63) (dual of [1070, 818, 64]-code) | [i] | ||
67 | Linear OA(4247, 1070, F4, 62) (dual of [1070, 823, 63]-code) | [i] | ||
68 | Linear OA(4242, 1070, F4, 61) (dual of [1070, 828, 62]-code) | [i] | ||
69 | Linear OA(4232, 1070, F4, 58) (dual of [1070, 838, 59]-code) | [i] | ||
70 | Linear OA(4222, 1070, F4, 55) (dual of [1070, 848, 56]-code) | [i] | ||
71 | Linear OA(4217, 1070, F4, 54) (dual of [1070, 853, 55]-code) | [i] | ||
72 | Linear OA(4212, 1070, F4, 53) (dual of [1070, 858, 54]-code) | [i] | ||
73 | Linear OA(4202, 1070, F4, 50) (dual of [1070, 868, 51]-code) | [i] | ||
74 | Linear OA(4192, 1070, F4, 47) (dual of [1070, 878, 48]-code) | [i] | ||
75 | Linear OA(4187, 1070, F4, 46) (dual of [1070, 883, 47]-code) | [i] | ||
76 | Linear OA(4182, 1070, F4, 45) (dual of [1070, 888, 46]-code) | [i] | ||
77 | Linear OA(4172, 1070, F4, 42) (dual of [1070, 898, 43]-code) | [i] | ||
78 | Linear OA(4162, 1070, F4, 39) (dual of [1070, 908, 40]-code) | [i] | ||
79 | Linear OA(4157, 1070, F4, 38) (dual of [1070, 913, 39]-code) | [i] | ||
80 | Linear OA(4152, 1070, F4, 37) (dual of [1070, 918, 38]-code) | [i] | ||
81 | Linear OA(4142, 1070, F4, 34) (dual of [1070, 928, 35]-code) | [i] | ||
82 | Linear OA(4132, 1070, F4, 31) (dual of [1070, 938, 32]-code) | [i] | ||
83 | Linear OA(4127, 1070, F4, 30) (dual of [1070, 943, 31]-code) | [i] | ||
84 | Linear OA(4122, 1070, F4, 29) (dual of [1070, 948, 30]-code) | [i] | ||
85 | Linear OA(4112, 1070, F4, 26) (dual of [1070, 958, 27]-code) | [i] | ||
86 | Linear OA(4102, 1070, F4, 23) (dual of [1070, 968, 24]-code) | [i] |