Information on Result #701076

Linear OA(450, 73, F4, 27) (dual of [73, 23, 28]-code), using construction XX applied to C1 = C({0,1,2,3,5,6,7,9,10,11,13,14,15,21,22,47}), C2 = C([1,23]), C3 = C1 + C2 = C([1,22]), and C∩ = C1 ∩ C2 = C({0,1,2,3,5,6,7,9,10,11,13,14,15,21,22,23,47}) based on
  1. linear OA(444, 63, F4, 24) (dual of [63, 19, 25]-code), using the primitive cyclic code C(A) with length 63 = 43−1, defining set A = {0,1,2,3,5,6,7,9,10,11,13,14,15,21,22,47}, and minimum distance d ≥ |{−1,0,…,22}|+1 = 25 (BCH-bound) [i]
  2. linear OA(443, 63, F4, 25) (dual of [63, 20, 26]-code), using the primitive narrow-sense BCH-code C(I) with length 63 = 43−1, defining interval I = [1,23], and designed minimum distance d ≥ |I|+1 = 26 [i]
  3. linear OA(447, 63, F4, 27) (dual of [63, 16, 28]-code), using the primitive cyclic code C(A) with length 63 = 43−1, defining set A = {0,1,2,3,5,6,7,9,10,11,13,14,15,21,22,23,47}, and minimum distance d ≥ |{−1,0,…,25}|+1 = 28 (BCH-bound) [i]
  4. linear OA(440, 63, F4, 22) (dual of [63, 23, 23]-code), using the primitive narrow-sense BCH-code C(I) with length 63 = 43−1, defining interval I = [1,22], and designed minimum distance d ≥ |I|+1 = 23 [i]
  5. linear OA(41, 5, F4, 1) (dual of [5, 4, 2]-code), using
  6. linear OA(42, 5, F4, 2) (dual of [5, 3, 3]-code or 5-arc in PG(1,4)), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

None.