Information on Result #701191

Linear OA(523, 24, F5, 23) (dual of [24, 1, 24]-code or 24-arc in PG(22,5)), using the primitive cyclic code C(A) with length 24 = 52−1, defining set A = {0,1,2,3,4,6,7,8,9,12,13,14,19}, and minimum distance d ≥ |{1,8,15,…,11}|+1 = 24 (BCH-bound)

Mode: Constructive and linear.

This result is hidden, because other results with identical parameters exist.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(523, 24, F5, 22) (dual of [24, 1, 23]-code) [i]Strength Reduction
2Linear OA(523, 24, F5, 21) (dual of [24, 1, 22]-code) [i]
3Linear OA(523, 24, F5, 20) (dual of [24, 1, 21]-code) [i]
4Linear OA(591, 96, F5, 71) (dual of [96, 5, 72]-code) [i]Generalized (u, u+v)-Construction
5Linear OA(547, 82, F5, 23) (dual of [82, 35, 24]-code) [i]VarÅ¡amov–Edel Lengthening
6Linear OA(551, 106, F5, 23) (dual of [106, 55, 24]-code) [i]
7Linear OA(555, 138, F5, 23) (dual of [138, 83, 24]-code) [i]
8Linear OA(578, 692, F5, 23) (dual of [692, 614, 24]-code) [i]
9Linear OA(588, 1426, F5, 23) (dual of [1426, 1338, 24]-code) [i]
10Linear OA(590, 1649, F5, 23) (dual of [1649, 1559, 24]-code) [i]
11Linear OA(531, 39, F5, 20) (dual of [39, 8, 21]-code) [i]Construction XX with Cyclic Codes
12Linear OA(530, 37, F5, 20) (dual of [37, 7, 21]-code) [i]