Information on Result #701260

Linear OA(530, 68, F5, 13) (dual of [68, 38, 14]-code), using construction XX applied to C1 = C({2,3,8,9,11,12,16,17,19}), C2 = C({2,3,7,8,9,11,12,16,17}), C3 = C1 + C2 = C({2,3,8,9,11,12,16,17}), and C∩ = C1 ∩ C2 = C({2,3,7,8,9,11,12,16,17,19}) based on
  1. linear OA(527, 62, F5, 12) (dual of [62, 35, 13]-code), using the cyclic code C(A) with length 62 | 53−1, defining set A = {2,3,8,9,11,12,16,17,19}, and minimum distance d ≥ |{8,9,…,19}|+1 = 13 (BCH-bound) [i]
  2. linear OA(527, 62, F5, 12) (dual of [62, 35, 13]-code), using the cyclic code C(A) with length 62 | 53−1, defining set A = {2,3,7,8,9,11,12,16,17}, and minimum distance d ≥ |{7,8,…,18}|+1 = 13 (BCH-bound) [i]
  3. linear OA(530, 62, F5, 13) (dual of [62, 32, 14]-code), using the cyclic code C(A) with length 62 | 53−1, defining set A = {2,3,7,8,9,11,12,16,17,19}, and minimum distance d ≥ |{7,8,…,19}|+1 = 14 (BCH-bound) [i]
  4. linear OA(524, 62, F5, 11) (dual of [62, 38, 12]-code), using the cyclic code C(A) with length 62 | 53−1, defining set A = {2,3,8,9,11,12,16,17}, and minimum distance d ≥ |{8,9,…,18}|+1 = 12 (BCH-bound) [i]
  5. linear OA(50, 3, F5, 0) (dual of [3, 3, 1]-code), using
  6. linear OA(50, 3, F5, 0) (dual of [3, 3, 1]-code) (see above)

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(530, 34, F5, 2, 13) (dual of [(34, 2), 38, 14]-NRT-code) [i]OOA Folding