Information on Result #701351

Linear OA(724, 58, F7, 13) (dual of [58, 34, 14]-code), using construction XX applied to C1 = C({0,1,2,3,4,5,6,8,27,34,41}), C2 = C([0,9]), C3 = C1 + C2 = C([0,8]), and C∩ = C1 ∩ C2 = C({0,1,2,3,4,5,6,8,9,27,34,41}) based on
  1. linear OA(720, 48, F7, 12) (dual of [48, 28, 13]-code), using the primitive cyclic code C(A) with length 48 = 72−1, defining set A = {0,1,2,3,4,5,6,8,27,34,41}, and minimum distance d ≥ |{−3,−2,…,8}|+1 = 13 (BCH-bound) [i]
  2. linear OA(716, 48, F7, 10) (dual of [48, 32, 11]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 48 = 72−1, defining interval I = [0,9], and designed minimum distance d ≥ |I|+1 = 11 [i]
  3. linear OA(722, 48, F7, 13) (dual of [48, 26, 14]-code), using the primitive cyclic code C(A) with length 48 = 72−1, defining set A = {0,1,2,3,4,5,6,8,9,27,34,41}, and minimum distance d ≥ |{−3,−2,…,9}|+1 = 14 (BCH-bound) [i]
  4. linear OA(714, 48, F7, 9) (dual of [48, 34, 10]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 48 = 72−1, defining interval I = [0,8], and designed minimum distance d ≥ |I|+1 = 10 [i]
  5. linear OA(72, 8, F7, 2) (dual of [8, 6, 3]-code or 8-arc in PG(1,7)), using
  6. linear OA(70, 2, F7, 0) (dual of [2, 2, 1]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(725, 61, F7, 13) (dual of [61, 36, 14]-code) [i]VarÅ¡amov–Edel Lengthening
2Linear OOA(724, 29, F7, 2, 13) (dual of [(29, 2), 34, 14]-NRT-code) [i]OOA Folding