Information on Result #701388

Linear OA(737, 67, F7, 19) (dual of [67, 30, 20]-code), using construction XX applied to C1 = C({0,1,2,3,4,5,6,8,9,10,27,34,41}), C2 = C([0,13]), C3 = C1 + C2 = C([0,10]), and C∩ = C1 ∩ C2 = C({0,1,2,3,4,5,6,8,9,10,11,12,13,27,34,41}) based on
  1. linear OA(724, 48, F7, 14) (dual of [48, 24, 15]-code), using the primitive cyclic code C(A) with length 48 = 72−1, defining set A = {0,1,2,3,4,5,6,8,9,10,27,34,41}, and minimum distance d ≥ |{−3,−2,…,10}|+1 = 15 (BCH-bound) [i]
  2. linear OA(724, 48, F7, 16) (dual of [48, 24, 17]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 48 = 72−1, defining interval I = [0,13], and designed minimum distance d ≥ |I|+1 = 17 [i]
  3. linear OA(730, 48, F7, 19) (dual of [48, 18, 20]-code), using the primitive cyclic code C(A) with length 48 = 72−1, defining set A = {0,1,2,3,4,5,6,8,9,10,11,12,13,27,34,41}, and minimum distance d ≥ |{−3,−2,…,15}|+1 = 20 (BCH-bound) [i]
  4. linear OA(718, 48, F7, 11) (dual of [48, 30, 12]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 48 = 72−1, defining interval I = [0,10], and designed minimum distance d ≥ |I|+1 = 12 [i]
  5. linear OA(72, 8, F7, 2) (dual of [8, 6, 3]-code or 8-arc in PG(1,7)), using
  6. linear OA(75, 11, F7, 4) (dual of [11, 6, 5]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

None.