Information on Result #701392

Linear OA(716, 48, F7, 10) (dual of [48, 32, 11]-code), using the primitive cyclic code C(A) with length 48 = 72−1, defining set A = {1,2,8,9,10,11,12,13,16}, and minimum distance d ≥ |{7,8,…,16}|+1 = 11 (BCH-bound)

Mode: Constructive and linear.

This result is hidden, because other results with identical parameters exist.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(7107, 390, F7, 34) (dual of [390, 283, 35]-code) [i]Construction X with Cyclic Codes
2Linear OA(7101, 390, F7, 32) (dual of [390, 289, 33]-code) [i]
3Linear OA(735, 67, F7, 18) (dual of [67, 32, 19]-code) [i]Construction XX with Cyclic Codes
4Linear OA(7110, 386, F7, 37) (dual of [386, 276, 38]-code) [i]Construction X with Extended Narrow-Sense BCH Codes
5Linear OA(7107, 386, F7, 36) (dual of [386, 279, 37]-code) [i]
6Linear OA(795, 386, F7, 31) (dual of [386, 291, 32]-code) [i]
7Linear OA(792, 386, F7, 30) (dual of [386, 294, 31]-code) [i]
8Linear OA(789, 386, F7, 29) (dual of [386, 297, 30]-code) [i]
9Linear OA(7107, 389, F7, 35) (dual of [389, 282, 36]-code) [i]
10Linear OA(7104, 389, F7, 34) (dual of [389, 285, 35]-code) [i]
11Linear OA(7101, 389, F7, 33) (dual of [389, 288, 34]-code) [i]