Information on Result #701409

Linear OA(733, 48, F7, 24) (dual of [48, 15, 25]-code), using the primitive cyclic code C(A) with length 48 = 72−1, defining set A = {0,1,2,3,4,5,6,8,9,10,11,12,13,20,27,34,40,41}, and minimum distance d ≥ |{−8,−7,…,15}|+1 = 25 (BCH-bound)

Mode: Constructive and linear.

This result is hidden, because other results with identical parameters exist.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(779, 92, F7, 49) (dual of [92, 13, 50]-code) [i]Repeating Each Code Word
2Linear OA(778, 90, F7, 49) (dual of [90, 12, 50]-code) [i]
3Linear OA(777, 88, F7, 49) (dual of [88, 11, 50]-code) [i]
4Linear OA(776, 86, F7, 49) (dual of [86, 10, 50]-code) [i]
5Linear OA(747, 72, F7, 26) (dual of [72, 25, 27]-code) [i]Construction XX with Cyclic Codes
6Linear OA(750, 75, F7, 27) (dual of [75, 25, 28]-code) [i]
7Linear OOA(733, 24, F7, 2, 24) (dual of [(24, 2), 15, 25]-NRT-code) [i]OOA Folding
8Linear OOA(733, 16, F7, 3, 24) (dual of [(16, 3), 15, 25]-NRT-code) [i]