Information on Result #701549

Linear OA(845, 70, F8, 30) (dual of [70, 25, 31]-code), using construction X applied to C({2,3,4,5,6,10,11,12,13,14,19}) ⊂ C({3,4,5,6,10,11,12,13,14,19}) based on
  1. linear OA(844, 65, F8, 30) (dual of [65, 21, 31]-code), using the cyclic code C(A) with length 65 | 84−1, defining set A = {2,3,4,5,6,10,11,12,13,14,19}, and minimum distance d ≥ |{−16,12,40,…,16}|+1 = 31 (BCH-bound) [i]
  2. linear OA(840, 65, F8, 28) (dual of [65, 25, 29]-code), using the cyclic code C(A) with length 65 | 84−1, defining set A = {3,4,5,6,10,11,12,13,14,19}, and minimum distance d ≥ |{12,40,3,…,−12}|+1 = 29 (BCH-bound) [i]
  3. linear OA(81, 5, F8, 1) (dual of [5, 4, 2]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(845, 70, F8, 29) (dual of [70, 25, 30]-code) [i]Strength Reduction
2Linear OA(847, 72, F8, 30) (dual of [72, 25, 31]-code) [i]Code Embedding in Larger Space
3Linear OA(844, 69, F8, 29) (dual of [69, 25, 30]-code) [i]Truncation
4Linear OA(851, 81, F8, 30) (dual of [81, 30, 31]-code) [i]VarÅ¡amov–Edel Lengthening
5Linear OA(852, 85, F8, 30) (dual of [85, 33, 31]-code) [i]
6Linear OA(853, 90, F8, 30) (dual of [90, 37, 31]-code) [i]
7Linear OOA(845, 35, F8, 2, 30) (dual of [(35, 2), 25, 31]-NRT-code) [i]OOA Folding