Information on Result #701714

Linear OA(257, 255, F2, 15) (dual of [255, 198, 16]-code), using the primitive BCH-code C(I) with length 255 = 28−1, defining interval I = {−2,−1,…,12}, and designed minimum distance d ≥ |I|+1 = 16

Mode: Constructive and linear.

This result is hidden, because other results with identical parameters exist.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(262, 277, F2, 15) (dual of [277, 215, 16]-code) [i]Construction XX with Cyclic Codes
2Linear OA(259, 274, F2, 14) (dual of [274, 215, 15]-code) [i]
3Linear OA(259, 273, F2, 15) (dual of [273, 214, 16]-code) [i]
4Linear OA(270, 277, F2, 17) (dual of [277, 207, 18]-code) [i]
5Linear OA(267, 274, F2, 16) (dual of [274, 207, 17]-code) [i]
6Linear OA(267, 273, F2, 17) (dual of [273, 206, 18]-code) [i]
7Linear OOA(257, 85, F2, 3, 15) (dual of [(85, 3), 198, 16]-NRT-code) [i]OOA Folding
8Linear OOA(257, 51, F2, 5, 15) (dual of [(51, 5), 198, 16]-NRT-code) [i]
9Linear OOA(257, 42, F2, 6, 15) (dual of [(42, 6), 195, 16]-NRT-code) [i]