Information on Result #701759
Linear OA(2105, 293, F2, 24) (dual of [293, 188, 25]-code), using construction XX applied to C1 = C([249,16]), C2 = C([1,18]), C3 = C1 + C2 = C([1,16]), and C∩ = C1 ∩ C2 = C([249,18]) based on
- linear OA(289, 255, F2, 23) (dual of [255, 166, 24]-code), using the primitive BCH-code C(I) with length 255 = 28−1, defining interval I = {−6,−5,…,16}, and designed minimum distance d ≥ |I|+1 = 24 [i]
- linear OA(268, 255, F2, 18) (dual of [255, 187, 19]-code), using the primitive narrow-sense BCH-code C(I) with length 255 = 28−1, defining interval I = [1,18], and designed minimum distance d ≥ |I|+1 = 19 [i]
- linear OA(293, 255, F2, 25) (dual of [255, 162, 26]-code), using the primitive BCH-code C(I) with length 255 = 28−1, defining interval I = {−6,−5,…,18}, and designed minimum distance d ≥ |I|+1 = 26 [i]
- linear OA(264, 255, F2, 16) (dual of [255, 191, 17]-code), using the primitive narrow-sense BCH-code C(I) with length 255 = 28−1, defining interval I = [1,16], and designed minimum distance d ≥ |I|+1 = 17 [i]
- linear OA(211, 33, F2, 5) (dual of [33, 22, 6]-code), using
- the expurgated narrow-sense BCH-code C(I) with length 33 | 210−1, defining interval I = [0,2], and minimum distance d ≥ |{−2,−1,0,1,2}|+1 = 6 (BCH-bound) [i]
- linear OA(21, 5, F2, 1) (dual of [5, 4, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(21, s, F2, 1) (dual of [s, s−1, 2]-code) for arbitrarily large s, using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.