Information on Result #701895

Linear OA(2127, 273, F2, 33) (dual of [273, 146, 34]-code), using construction XX applied to C1 = C([253,28]), C2 = C([0,30]), C3 = C1 + C2 = C([0,28]), and C∩ = C1 ∩ C2 = C([253,30]) based on
  1. linear OA(2117, 255, F2, 31) (dual of [255, 138, 32]-code), using the primitive BCH-code C(I) with length 255 = 28−1, defining interval I = {−2,−1,…,28}, and designed minimum distance d ≥ |I|+1 = 32 [i]
  2. linear OA(2117, 255, F2, 31) (dual of [255, 138, 32]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 255 = 28−1, defining interval I = [0,30], and designed minimum distance d ≥ |I|+1 = 32 [i]
  3. linear OA(2125, 255, F2, 33) (dual of [255, 130, 34]-code), using the primitive BCH-code C(I) with length 255 = 28−1, defining interval I = {−2,−1,…,30}, and designed minimum distance d ≥ |I|+1 = 34 [i]
  4. linear OA(2109, 255, F2, 29) (dual of [255, 146, 30]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 255 = 28−1, defining interval I = [0,28], and designed minimum distance d ≥ |I|+1 = 30 [i]
  5. linear OA(21, 9, F2, 1) (dual of [9, 8, 2]-code), using
  6. linear OA(21, 9, F2, 1) (dual of [9, 8, 2]-code) (see above)

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(2126, 272, F2, 32) (dual of [272, 146, 33]-code) [i]Truncation
2Linear OOA(2127, 136, F2, 2, 33) (dual of [(136, 2), 145, 34]-NRT-code) [i]OOA Folding
3Linear OOA(2127, 91, F2, 3, 33) (dual of [(91, 3), 146, 34]-NRT-code) [i]