Information on Result #701906

Linear OA(2133, 255, F2, 39) (dual of [255, 122, 40]-code), using the primitive BCH-code C(I) with length 255 = 28−1, defining interval I = {−38,−37,…,0}, and designed minimum distance d ≥ |I|+1 = 40

Mode: Constructive and linear.

This result is hidden, because other results with identical parameters exist.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(2162, 305, F2, 40) (dual of [305, 143, 41]-code) [i]Construction XX with Cyclic Codes
2Linear OA(2158, 296, F2, 41) (dual of [296, 138, 42]-code) [i]
3Linear OA(2154, 288, F2, 41) (dual of [288, 134, 42]-code) [i]
4Linear OA(2155, 277, F2, 45) (dual of [277, 122, 46]-code) [i]
5Linear OA(2154, 272, F2, 45) (dual of [272, 118, 46]-code) [i]
6Linear OA(2169, 291, F2, 47) (dual of [291, 122, 48]-code) [i]
7Linear OA(2168, 286, F2, 47) (dual of [286, 118, 48]-code) [i]
8Linear OOA(2133, 85, F2, 3, 39) (dual of [(85, 3), 122, 40]-NRT-code) [i]OOA Folding
9Linear OOA(2133, 51, F2, 5, 39) (dual of [(51, 5), 122, 40]-NRT-code) [i]