Information on Result #701918
Linear OA(2132, 255, F2, 38) (dual of [255, 123, 39]-code), using the primitive BCH-code C(I) with length 255 = 28−1, defining interval I = {−38,−37,…,−1}, and designed minimum distance d ≥ |I|+1 = 39
Mode: Constructive and linear.
This result is hidden, because other results with identical parameters exist.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(2131, 202, F2, 38) (dual of [202, 71, 39]-code) | [i] | Construction Y1 | |
2 | Linear OA(2161, 300, F2, 41) (dual of [300, 139, 42]-code) | [i] | ✔ | Construction XX with Cyclic Codes |
3 | Linear OA(2158, 297, F2, 40) (dual of [297, 139, 41]-code) | [i] | ✔ | |
4 | Linear OA(2157, 293, F2, 40) (dual of [293, 136, 41]-code) | [i] | ✔ | |
5 | Linear OA(2157, 292, F2, 41) (dual of [292, 135, 42]-code) | [i] | ✔ | |
6 | Linear OA(2154, 289, F2, 40) (dual of [289, 135, 41]-code) | [i] | ✔ | |
7 | Linear OA(2158, 281, F2, 45) (dual of [281, 123, 46]-code) | [i] | ✔ | |
8 | Linear OA(2155, 278, F2, 44) (dual of [278, 123, 45]-code) | [i] | ✔ | |
9 | Linear OA(2154, 273, F2, 44) (dual of [273, 119, 45]-code) | [i] | ✔ | |
10 | Linear OA(2172, 295, F2, 47) (dual of [295, 123, 48]-code) | [i] | ✔ | |
11 | Linear OA(2169, 292, F2, 46) (dual of [292, 123, 47]-code) | [i] | ✔ | |
12 | Linear OA(2168, 287, F2, 46) (dual of [287, 119, 47]-code) | [i] | ✔ | |
13 | Linear OOA(2132, 127, F2, 2, 38) (dual of [(127, 2), 122, 39]-NRT-code) | [i] | OOA Folding | |
14 | Linear OOA(2132, 85, F2, 3, 38) (dual of [(85, 3), 123, 39]-NRT-code) | [i] | ||
15 | Linear OOA(2132, 63, F2, 4, 38) (dual of [(63, 4), 120, 39]-NRT-code) | [i] | ||
16 | Linear OOA(2132, 51, F2, 5, 38) (dual of [(51, 5), 123, 39]-NRT-code) | [i] |