Information on Result #701918

Linear OA(2132, 255, F2, 38) (dual of [255, 123, 39]-code), using the primitive BCH-code C(I) with length 255 = 28−1, defining interval I = {−38,−37,…,−1}, and designed minimum distance d ≥ |I|+1 = 39

Mode: Constructive and linear.

This result is hidden, because other results with identical parameters exist.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(2131, 202, F2, 38) (dual of [202, 71, 39]-code) [i]Construction Y1
2Linear OA(2161, 300, F2, 41) (dual of [300, 139, 42]-code) [i]Construction XX with Cyclic Codes
3Linear OA(2158, 297, F2, 40) (dual of [297, 139, 41]-code) [i]
4Linear OA(2157, 293, F2, 40) (dual of [293, 136, 41]-code) [i]
5Linear OA(2157, 292, F2, 41) (dual of [292, 135, 42]-code) [i]
6Linear OA(2154, 289, F2, 40) (dual of [289, 135, 41]-code) [i]
7Linear OA(2158, 281, F2, 45) (dual of [281, 123, 46]-code) [i]
8Linear OA(2155, 278, F2, 44) (dual of [278, 123, 45]-code) [i]
9Linear OA(2154, 273, F2, 44) (dual of [273, 119, 45]-code) [i]
10Linear OA(2172, 295, F2, 47) (dual of [295, 123, 48]-code) [i]
11Linear OA(2169, 292, F2, 46) (dual of [292, 123, 47]-code) [i]
12Linear OA(2168, 287, F2, 46) (dual of [287, 119, 47]-code) [i]
13Linear OOA(2132, 127, F2, 2, 38) (dual of [(127, 2), 122, 39]-NRT-code) [i]OOA Folding
14Linear OOA(2132, 85, F2, 3, 38) (dual of [(85, 3), 123, 39]-NRT-code) [i]
15Linear OOA(2132, 63, F2, 4, 38) (dual of [(63, 4), 120, 39]-NRT-code) [i]
16Linear OOA(2132, 51, F2, 5, 38) (dual of [(51, 5), 123, 39]-NRT-code) [i]