Information on Result #701931
Linear OA(2159, 301, F2, 41) (dual of [301, 142, 42]-code), using construction XX applied to C1 = C([219,0]), C2 = C([227,4]), C3 = C1 + C2 = C([227,0]), and C∩ = C1 ∩ C2 = C([219,4]) based on
- linear OA(2125, 255, F2, 37) (dual of [255, 130, 38]-code), using the primitive BCH-code C(I) with length 255 = 28−1, defining interval I = {−36,−35,…,0}, and designed minimum distance d ≥ |I|+1 = 38 [i]
- linear OA(2125, 255, F2, 33) (dual of [255, 130, 34]-code), using the primitive BCH-code C(I) with length 255 = 28−1, defining interval I = {−28,−27,…,4}, and designed minimum distance d ≥ |I|+1 = 34 [i]
- linear OA(2141, 255, F2, 41) (dual of [255, 114, 42]-code), using the primitive BCH-code C(I) with length 255 = 28−1, defining interval I = {−36,−35,…,4}, and designed minimum distance d ≥ |I|+1 = 42 [i]
- linear OA(2109, 255, F2, 29) (dual of [255, 146, 30]-code), using the primitive BCH-code C(I) with length 255 = 28−1, defining interval I = {−28,−27,…,0}, and designed minimum distance d ≥ |I|+1 = 30 [i]
- linear OA(212, 24, F2, 7) (dual of [24, 12, 8]-code), using
- extended Golay code Ge(2) [i]
- linear OA(26, 22, F2, 3) (dual of [22, 16, 4]-code or 22-cap in PG(5,2)), using
- discarding factors / shortening the dual code based on linear OA(26, 32, F2, 3) (dual of [32, 26, 4]-code or 32-cap in PG(5,2)), using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(2158, 300, F2, 40) (dual of [300, 142, 41]-code) | [i] | Truncation | |
2 | Linear OOA(2159, 150, F2, 2, 41) (dual of [(150, 2), 141, 42]-NRT-code) | [i] | OOA Folding | |
3 | Linear OOA(2159, 100, F2, 3, 41) (dual of [(100, 3), 141, 42]-NRT-code) | [i] |