Information on Result #702016
Linear OA(2188, 286, F2, 55) (dual of [286, 98, 56]-code), using construction XX applied to C1 = C([203,0]), C2 = C([209,2]), C3 = C1 + C2 = C([209,0]), and C∩ = C1 ∩ C2 = C([203,2]) based on
- linear OA(2169, 255, F2, 53) (dual of [255, 86, 54]-code), using the primitive BCH-code C(I) with length 255 = 28−1, defining interval I = {−52,−51,…,0}, and designed minimum distance d ≥ |I|+1 = 54 [i]
- linear OA(2165, 255, F2, 49) (dual of [255, 90, 50]-code), using the primitive BCH-code C(I) with length 255 = 28−1, defining interval I = {−46,−45,…,2}, and designed minimum distance d ≥ |I|+1 = 50 [i]
- linear OA(2177, 255, F2, 55) (dual of [255, 78, 56]-code), using the primitive BCH-code C(I) with length 255 = 28−1, defining interval I = {−52,−51,…,2}, and designed minimum distance d ≥ |I|+1 = 56 [i]
- linear OA(2157, 255, F2, 47) (dual of [255, 98, 48]-code), using the primitive BCH-code C(I) with length 255 = 28−1, defining interval I = {−46,−45,…,0}, and designed minimum distance d ≥ |I|+1 = 48 [i]
- linear OA(210, 22, F2, 5) (dual of [22, 12, 6]-code), using
- discarding factors / shortening the dual code based on linear OA(210, 24, F2, 5) (dual of [24, 14, 6]-code), using
- linear OA(21, 9, F2, 1) (dual of [9, 8, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(21, s, F2, 1) (dual of [s, s−1, 2]-code) for arbitrarily large s, using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(2187, 285, F2, 54) (dual of [285, 98, 55]-code) | [i] | Truncation | |
2 | Linear OOA(2188, 143, F2, 2, 55) (dual of [(143, 2), 98, 56]-NRT-code) | [i] | OOA Folding | |
3 | Linear OOA(2188, 95, F2, 3, 55) (dual of [(95, 3), 97, 56]-NRT-code) | [i] |