Information on Result #702036
Linear OA(2225, 272, F2, 90) (dual of [272, 47, 91]-code), using construction XX applied to C1 = C([251,84]), C2 = C([1,86]), C3 = C1 + C2 = C([1,84]), and C∩ = C1 ∩ C2 = C([251,86]) based on
- linear OA(2217, 255, F2, 89) (dual of [255, 38, 90]-code), using the primitive BCH-code C(I) with length 255 = 28−1, defining interval I = {−4,−3,…,84}, and designed minimum distance d ≥ |I|+1 = 90 [i]
- linear OA(2210, 255, F2, 86) (dual of [255, 45, 87]-code), using the primitive narrow-sense BCH-code C(I) with length 255 = 28−1, defining interval I = [1,86], and designed minimum distance d ≥ |I|+1 = 87 [i]
- linear OA(2219, 255, F2, 91) (dual of [255, 36, 92]-code), using the primitive BCH-code C(I) with length 255 = 28−1, defining interval I = {−4,−3,…,86}, and designed minimum distance d ≥ |I|+1 = 92 [i]
- linear OA(2208, 255, F2, 84) (dual of [255, 47, 85]-code), using the primitive narrow-sense BCH-code C(I) with length 255 = 28−1, defining interval I = [1,84], and designed minimum distance d ≥ |I|+1 = 85 [i]
- linear OA(25, 14, F2, 3) (dual of [14, 9, 4]-code or 14-cap in PG(4,2)), using
- discarding factors / shortening the dual code based on linear OA(25, 16, F2, 3) (dual of [16, 11, 4]-code or 16-cap in PG(4,2)), using
- linear OA(21, 3, F2, 1) (dual of [3, 2, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(21, s, F2, 1) (dual of [s, s−1, 2]-code) for arbitrarily large s, using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(2225, 272, F2, 89) (dual of [272, 47, 90]-code) | [i] | Strength Reduction | |
2 | Linear OA(2225, 272, F2, 88) (dual of [272, 47, 89]-code) | [i] | ||
3 | Linear OA(2225, 272, F2, 87) (dual of [272, 47, 88]-code) | [i] | ||
4 | Linear OA(2225, 272, F2, 86) (dual of [272, 47, 87]-code) | [i] | ||
5 | Linear OA(2225, 272, F2, 85) (dual of [272, 47, 86]-code) | [i] | ||
6 | Linear OA(2225, 272, F2, 84) (dual of [272, 47, 85]-code) | [i] | ||
7 | Linear OA(2225, 272, F2, 83) (dual of [272, 47, 84]-code) | [i] | ||
8 | Linear OA(2225, 272, F2, 82) (dual of [272, 47, 83]-code) | [i] | ||
9 | Linear OA(2225, 272, F2, 81) (dual of [272, 47, 82]-code) | [i] | ||
10 | Linear OA(2230, 277, F2, 90) (dual of [277, 47, 91]-code) | [i] | Code Embedding in Larger Space | |
11 | Linear OA(2231, 278, F2, 90) (dual of [278, 47, 91]-code) | [i] | ||
12 | Linear OA(2232, 279, F2, 90) (dual of [279, 47, 91]-code) | [i] | ||
13 | Linear OA(2233, 280, F2, 90) (dual of [280, 47, 91]-code) | [i] | ||
14 | Linear OA(2234, 281, F2, 90) (dual of [281, 47, 91]-code) | [i] | ||
15 | Linear OA(2226, 273, F2, 91) (dual of [273, 47, 92]-code) | [i] | Adding a Parity Check Bit | |
16 | Linear OA(2241, 289, F2, 90) (dual of [289, 48, 91]-code) | [i] | Construction X with Varšamov Bound | |
17 | Linear OOA(2225, 136, F2, 2, 90) (dual of [(136, 2), 47, 91]-NRT-code) | [i] | OOA Folding |