Information on Result #702049

Linear OA(2221, 267, F2, 89) (dual of [267, 46, 90]-code), using construction XX applied to C1 = C([251,84]), C2 = C([0,86]), C3 = C1 + C2 = C([0,84]), and C∩ = C1 ∩ C2 = C([251,86]) based on
  1. linear OA(2217, 255, F2, 89) (dual of [255, 38, 90]-code), using the primitive BCH-code C(I) with length 255 = 28−1, defining interval I = {−4,−3,…,84}, and designed minimum distance d ≥ |I|+1 = 90 [i]
  2. linear OA(2211, 255, F2, 87) (dual of [255, 44, 88]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 255 = 28−1, defining interval I = [0,86], and designed minimum distance d ≥ |I|+1 = 88 [i]
  3. linear OA(2219, 255, F2, 91) (dual of [255, 36, 92]-code), using the primitive BCH-code C(I) with length 255 = 28−1, defining interval I = {−4,−3,…,86}, and designed minimum distance d ≥ |I|+1 = 92 [i]
  4. linear OA(2209, 255, F2, 85) (dual of [255, 46, 86]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 255 = 28−1, defining interval I = [0,84], and designed minimum distance d ≥ |I|+1 = 86 [i]
  5. linear OA(21, 9, F2, 1) (dual of [9, 8, 2]-code), using
  6. linear OA(21, 3, F2, 1) (dual of [3, 2, 2]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(2220, 266, F2, 88) (dual of [266, 46, 89]-code) [i]Truncation
2Linear OA(2132, 177, F2, 44) (dual of [177, 45, 45]-code) [i]Residual Code
3Linear OOA(2221, 133, F2, 2, 89) (dual of [(133, 2), 45, 90]-NRT-code) [i]OOA Folding
4Linear OOA(2221, 89, F2, 3, 89) (dual of [(89, 3), 46, 90]-NRT-code) [i]
5Linear OOA(2221, 38, F2, 7, 89) (dual of [(38, 7), 45, 90]-NRT-code) [i]