Information on Result #702433
Linear OA(2202, 554, F2, 44) (dual of [554, 352, 45]-code), using construction XX applied to C1 = C([505,36]), C2 = C([1,38]), C3 = C1 + C2 = C([1,36]), and C∩ = C1 ∩ C2 = C([505,38]) based on
- linear OA(2181, 511, F2, 43) (dual of [511, 330, 44]-code), using the primitive BCH-code C(I) with length 511 = 29−1, defining interval I = {−6,−5,…,36}, and designed minimum distance d ≥ |I|+1 = 44 [i]
- linear OA(2162, 511, F2, 38) (dual of [511, 349, 39]-code), using the primitive narrow-sense BCH-code C(I) with length 511 = 29−1, defining interval I = [1,38], and designed minimum distance d ≥ |I|+1 = 39 [i]
- linear OA(2190, 511, F2, 45) (dual of [511, 321, 46]-code), using the primitive BCH-code C(I) with length 511 = 29−1, defining interval I = {−6,−5,…,38}, and designed minimum distance d ≥ |I|+1 = 46 [i]
- linear OA(2153, 511, F2, 36) (dual of [511, 358, 37]-code), using the primitive narrow-sense BCH-code C(I) with length 511 = 29−1, defining interval I = [1,36], and designed minimum distance d ≥ |I|+1 = 37 [i]
- linear OA(211, 33, F2, 5) (dual of [33, 22, 6]-code), using
- the expurgated narrow-sense BCH-code C(I) with length 33 | 210−1, defining interval I = [0,2], and minimum distance d ≥ |{−2,−1,0,1,2}|+1 = 6 (BCH-bound) [i]
- linear OA(21, 10, F2, 1) (dual of [10, 9, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(21, s, F2, 1) (dual of [s, s−1, 2]-code) for arbitrarily large s, using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.